
0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E N o v e m b e r / D e c e m b e r 2 0 0 2 I E E E S O F T W A R E 1 3

I
occasionally come across people who
describe their programming tasks as te-
dious, which is often the sign of a de-
sign problem. One common source of
tedium is pulling data from an external
source. You almost always do the same

thing with the data, but because the data
differs each time, it’s difficult to reduce such

tedious programming. This is when you
should consider using metadata.

To illustrate the approach, consider a sim-
ple design problem: build a module that will
read data out of a simple file format into
memory. One example of this file is a tab-
delimited format with the first line containing
the names of the fields (see Table 1).

Explicit and implicit reads
Figure 1 offers perhaps the most

straightforward approach to this
problem—reading each column of
data into a record structure. As a
program, it’s pretty simple, because
it’s easy to read and to write. Trou-
ble rears, however, if you have a lot
of files to read. You have to write
this program for each file, which is
a tedious job, and tedium usually
has a bad smell—indicating worse
troubles. In this case, the trouble
would be duplication—always
something worth avoiding.

design

Using Metadata
Martin Fowler

E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

Table 1
Actual listing 1

Name Matches Innings Runs
DG Bradman 52 80 6,996
RG Pollock 23 41 2,256
GA Headley 22 40 2,190
H Sutcliffe 54 84 4,555
AC Gilchrist 31 44 2,160
E Paynter 20 31 1,540
KF Barrington 82 131 6,806
ED Weekes 48 81 4,455
WR Hammond 85 140 7,249Figure 1. A simple, explicit solution for reading data from a tab-delimited

file.

class ExplicitReader...
public String FileName;
TextReader reader;
static char[] SEPARATOR = {‘\t’};

public ExplicitReader (String fileName) {
FileName = fileName;

}
public IList ReadBatsmen() {

IList result = new ArrayList();
reader = File.OpenText (FileName);
reader.ReadLine(); //skip header
String line;
while ((line = reader.ReadLine()) != null) {

String[] items = line.Split(SEPARATOR);
Batsman bat = new Batsman();
bat.Name = items[0];
bat.Matches = Int32.Parse(items[1]);
bat.Innings = Int32.Parse(items[2]);
bat.Runs = Int32.Parse(items[3]);
result.Add(bat);

}
return result;

}
}
public class Batsman...

public String Name;
public int Matches;
public int Innings;
public int Runs;

1 4 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 2

Figure 2 offers one approach to
avoiding this tedium, a generic way
to read in any data from a file. The

advantage is that this single program
will read in any file, providing it fol-
lows the general format. If you have

a hundred of these kinds of files to
read, writing a single program like
this takes a lot less effort than writ-

public class ImplicitReader...
public String FileName;
TextReader reader;
static char[] SEPARATOR = {‘\t’};

public ImplicitReader (String fileName) {
FileName = fileName;

}
public IList Read() {

IList result = new ArrayList();
reader = File.OpenText (FileName);
IList headers = parseHeaders();
String line;
while ((line = reader.ReadLine()) != null) {

result.Add(parseLine(headers, line));
}
return result;

}
IList parseHeaders() {

IList result = new ArrayList();
String[] items = reader.ReadLine().Split(SEPARATOR);
foreach (String s in items) result.Add(s);
return result;

}
IDictionary parseLine (IList headers, String line) {

String[] items = line.Split(SEPARATOR);
IDictionary result = new Hashtable();
for (int i = 0; i < headers.Count; i++)

result[headers[i]] = items[i];
return result;
}

Figure 3. An explicit de-
sign that uses substitu-
tion on the variable part
of the program.

abstract class AbstractReader {
public AbstractReader (String fileName);

FileName = fileName;
}
public String FileName;
protected TextReader reader;
protected static char[] SEPARATOR = {‘\t’};

public IList Read() {
IList result = new ArrayList();
reader = File.OpenText (FileName);
skipHeader();
String line;
while ((line = reader.ReadLine()) != null) {

String[] items = line.Split(SEPARATOR);
result.Add(doRead(items));

}
return result;

}
private void skipHeader() {

reader.ReadLine();
}
protected abstract Object doRead (String[] items);
}

class ExplicitReader2 : AbstractReader ...
public ExplicitReader2 (String fileName) : base (fileName){}
override protected Object doRead(String[] items) {

Batsman result = new Batsman();
result.Name = items[0];
result.Matches = Int32.Parse(items[1]);
result.Innings = Int32.Parse(items[2]);
result.Runs = Int32.Parse(items[3]);
return result;

}

Figure 2. An implicit
design solution for
reading in data from
multiple files.

N o v e m b e r / D e c e m b e r 2 0 0 2 I E E E S O F T W A R E 1 5

ing an explicit program (as in Figure
1) for each file.

The problem with this generic style
is that it produces a dictionary, which is
easy to access (especially when your
language supports a simple index mech-
anism as C# does) but is not explicit.
Consequently, you can’t just look at a
file declaration to discover the possible
fields you must deal with, as you can
with the Batsmen class in Figure 1. Fur-
thermore, you lose all type information.

So, how can you have your explicit
cake while eating only a small amount
of code? One approach is to parame-
terize the assignment statements from
Figure 1 by enclosing them in a single
substitutable function. Figure 3 does
this with the object-oriented style of an
abstract superclass. In a more sophisti-
cated programming language, you

could just pass the block of assignment
statements in as a function argument.
By parameterizing the assignment
statements, you can reduce duplica-
tion. You can also reduce—but not
eliminate—the tedium. All those as-
signments still must be written, both
for reading and writing (if you are sup-
porting both). However, by taking ad-
vantage of the metadata in both the
target class and file structure, you can
avoid writing any assignments at all.

The metadata is available in two
forms. The field heading at the top of
the data file is a simple metadata that
supplies the field names (XML tag
names give the same information). If
the target class’s fields match the data
file’s names (or if we can make them
match), we have enough to infer the as-
signments. If we can query the target

class’s metadata, we can also determine
the types for the target class’s fields.
This lets us handle the type conversions
properly.

Two ways of using the
metadata

We can use the metadata in two
ways: reflective programming and code
generation. The reflective program-
ming approach leads us to a program
that uses reflection at runtime to set
field values in the target class (see Fig-
ure 4). Many modern platforms pro-
vide this kind of runtime reflection.
The resulting reader class can read any
file that conforms to the format and
has a matching target class.

The code generation style aims to
generate a class that’s similar to the
hand-written one in Figure 3. We can

Figure 4. A reflective programming design.

public class ReflectiveReader ...
public String FileName;
TextReader reader;
static char[] SEPARATOR = {‘\t’};
public Type ResultType;

public ReflectiveReader (String fileName, Type resultType) {
FileName = fileName;
ResultType = resultType;

}
public IList Read() {

IList result = new ArrayList();
reader = File.OpenText (FileName);
IList headers = parseHeaders();
String line;
while ((line = reader.ReadLine()) != null) {

result.Add(parseLine(headers, line));
}
return result;

}
IList parseHeaders() {

IList result = new ArrayList();
String[] items = reader.ReadLine().Split(SEPARATOR);
foreach (String s in items) result.Add(s);
return result;

}
Object parseLine (IList headers, String line) {

String[] items = line.Split(SEPARATOR);
Object result = createResultObject();
for (int i = 0; i < headers.Count; i++) {

FieldInfo field = ResultType.GetField((String)headers[i]);
if (field == null)

throw new Exception (“Unable to find field: “ + headers[i]);
field.SetValue(result, Convert.ChangeType(items[i],field.FieldType));

}
return result;

}
Object createResultObject() {

Type[] constructorParams = {};
return ResultType.GetConstructor(constructorParams).Invoke(null);

}
}

1 6 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 2

use the style presented in Figure 1, be-
cause we don’t have to worry about
duplication in the generated code. Fig-
ure 5 shows the kind of class we could
use to perform the generation, and Fig-

ure 6 shows the resulting class. Al-
though I’m using the same language in
this case, there’s no reason why the
generator must be the same language
as the class it’s generating—scripting

languages often make good languages
for generation due to their powerful
string handling.

The generator also uses the lan-
guage’s reflection capabilities to deter-

Figure 5. A generator.

public class ReaderGenerator ...
String DataFileName;
Type Target;
String ClassName;
TextWriter output;
public void Run() {

Console.WriteLine(output);
output = new StringWriter();
writeClassHeader();
writeConstructor();
writeDoRun();
writeClassFooter();
Console.WriteLine(output);
writeOutputFile();

}
void writeClassHeader() {

output.WriteLine(“using System;”);
output.WriteLine(“namespace metadata”);
output.WriteLine(“{“);
output.WriteLine(String.Format(“class {0} : AbstractReader “, ClassName));
output.WriteLine(“{“);

}
void writeClassFooter() {

output.WriteLine(“}”);
output.WriteLine(“}”);

}
void writeConstructor() {

output.Write(String.Format
(“\t public {0} () : base (\”{1}\”)”, ClassName, DataFileName));

output.WriteLine(“{}”);
}
static char[] SEPARATOR = {‘\t’};
void writeDoRun() {

output.WriteLine(“\toverride protected Object doRead(String[] items) {“);
output.WriteLine(String.Format (“\t\t{0} result = new {0}();”, Target));
writeFieldAssignments();
output.WriteLine(“\t\treturn result;”);
output.WriteLine(“\t}”);

}
void writeFieldAssignments() {

TextReader dataReader = File.OpenText (DataFileName);
String[] headers = dataReader.ReadLine().Split(SEPARATOR);
dataReader.Close();
for (int i = 0; i < headers.Length; i++) {

FieldInfo field = Target.GetField((String)headers[i]);
if (field == null)

throw new Exception (“Unknown Field: “ + headers[i]);
output.WriteLine(String.Format(

“\t\t result.{0} = ({1})Convert.ChangeType(“,
headers[i], field.FieldType));

output.WriteLine(String.Format(
“\t\t\titems[{0}],typeof({1}));”,
i, field.FieldType));

}
}
void writeOutputFile() {

StreamWriter outFile = new StreamWriter(File.Create(ClassName + “.cs”));
outFile.Write(output);
outFile.Close();

}
}

mine the field types; how-
ever, it does it at compile
time rather than at runtime.
The generated classes don’t
use the language’s reflection
capabilities.

Given these two styles of
metadata-based programs,
the obvious question is
when to use each style. The
reflective program offers a
single compact class to
carry out the mapping.
There are, however, some disadvan-
tages. Many people find reflection
somewhat hard to use, and it might
defeat some of your environment’s
tooling, such as intelligent reference
searches and automated refactorings.
In addition, in some environments, re-
flective calls can be significantly
slower than direct method calls.

Generation also has its problems.
You need discipline to ensure that de-
velopers don’t hand-edit the generated
files. You must also ensure that genera-

tion is done with every significant
change—the best way of doing this is
to make it part of an automated build
process. With many files, generation
might lead to a larger code bulk, which
might affect footprint and build times.
I usually prefer generation to reflective
programs, but you have to weigh your
decision based on your concerns.

T here’s also the question of whether
to use metadata-based techniques
at all. For something like this, I

wouldn’t bother for a few classes. I’d
just use a technique to separate the
varying code from the constant code.
I can’t give a hard number for when
it’s better to use metadata—it’s more
a reflection of the degree to which the
assignment’s monotony is affecting
development.

Martin Fowler is the chief scientist for ThoughtWorks, an
Internet systems delivery and consulting company. Contact him
at fowler@acm.org.

Figure 6. Example
code that Figure 5
generated.

using System;
namespace metadata
{
class ExplicitReader3 : AbstractReader
{
public ExplicitReader3 () : base (“batsmen.txt”){}

override protected Object doRead(String[] items) {
metadata.Batsman result = new metadata.Batsman();
result.Name = (System.String)Convert.ChangeType(

items[0],typeof(System.String));
result.Matches = (System.Int32)Convert.ChangeType(

items[1],typeof(System.Int32));
result.Innings = (System.Int32)Convert.ChangeType(

items[2],typeof(System.Int32));
result.Runs = (System.Int32)Convert.ChangeType(

items[3],typeof(System.Int32));
return result;

}
}
}

