
U
 , despite the clunky name, have become
one of the most popular techniques in object-
oriented methods. Ivar Jacobson brought them

to prominence by taking a widely used, yet informal tech-
nique and giving it a central place in system development.
Since then nearly every writer on object-oriented design
has talked about use cases and brought them into their ap-
proach. Naturally, they play an important role in the Uni-
fied Modeling Language (UML).

Use cases are valuable for several reasons. First, they help
in discovering requirements. Use cases allow you to capture
a user’s need by focusing on a task that the user needs to do.
Use cases help can help formulate system tests to ascertain
that the use case is indeed built into the system. They also
help control iterative development: in each development it-
eration, you build a subset of the required use cases.

Despite this wide usage, there are many problems about
use cases that are not well understood. The basic defini-
tion—a sequence of actions that a system can perform, in-
teracting with the users—is simple enough. But as soon as
you start trying to capture the use cases for a system, you
run into unanswered questions. I’ve also seen several pro-
jects get tangled up in use cases, getting into trouble in the
process. So here are a few cases of abuses I’ve seen, and
how I think you should avoid them.

Abuse by Decomposition
I’ve seen several projects get into difficulties by putting too
much effort into structuring the use cases. Following Jacob-
son’s work, the UML uses a pair of relationships between
use cases: uses and extends. These can be useful, but I’ve
more often seen them cause trouble—especially the uses re-
lationship. In such cases, the analysts take a fairly coarse-
grained use case and break it down into sub-use cases. Each
sub-use case can be further broken down, usually until you
reach some kind of elemental use case, which seems atomic
to some degree.

This is functional decomposition, a style of design that is
the antithesis of object-oriented development. It leads to
problems in a couple of ways: The first is when this use case
structure is reflected directly into the code, so that the de-

sign of the systems looks like the use cases. A common
symptom is to find behaviorally rich controller objects ma-
nipulating dumb data objects, which are little more than an
encapsulated data structure.

This kind of design loses most of the benefits of objects.
The system duplicates behavior across the different con-
trollers, and knowledge of the data structure is also spread
around these controllers. The essence of the problem is that
functional decomposition encourages you to think of a be-
havior in the context of a higher-level behavior. Done that
way, it is difficult to use that same behavior in another con-
text, even if it is mostly the same. With objects you want to
think of behaviors that are usable in many contexts. Func-
tional decomposition does not encourage that approach.

You can avoid this problem, of course, by remembering
that the internal structure of the system does not need to
look like the external structure (the use cases). However,
this is a difficult concept for developers without object-
oriented experience—who are also the most likely to build
a functional decomposition.

Even if you don’t find that the functional decomposition
affects your internal design, a heavily structured set of use
cases runs into trouble because people end up spending a
lot of time on them. Driving every use case down to ele-
mental steps, arguments about which use cases fit into
which higher-level use case, all take time that could be bet-
ter spent on other things. Capturing every detail of the use
cases isn’t needed in the early phases of development. You
do want to look early at the areas of high risk, but a lot of
the details can be left to the later stages of an iterative de-
velopment. That’s the whole point of iterative development.

So I discourage those new to objects from using the uses
relationship. I also treat similarities between design and use
cases as warning signs. The “extends” relationship seems to
cause less trouble, but I still don’t make a big thing of it. I’ve
seen projects that used use cases effectively without either
of these relationships, so they are by no means essential.

Abuse by Abstraction
Objects are all about abstraction. A good design is one that
finds powerful yet simple abstractions, making a complex
problem tractable. So as designers we are used to abstrac-
tion, encourage abstraction, glory in abstraction.

But abstraction can lead to trouble with use cases. I re-

Abuse Cases
Use and

Abuse Cases

Martin Fowler
martin_fowler@compuserve.com

M E T H O D S I N P R A C T I C E

Martin Fowler is an independent consultant based in Boston,
Massachusetts.

DISTRIBUTED www.DistributedComputing.com Computing 1

member talking to a user at one project who confessed that
although he understood the use cases at the beginning, he
now felt lost with the more abstract use cases. “I think I un-
derstand them when the developers explain them to me,
but I can’t remember the explanations later.” One of the
primary purposes of use cases is to communicate with the
users—the customers—of the system. Abstracting the use
cases beyond the level of comprehension isn’t going to help
anyone. A lack of abstraction in the use cases does no harm,
since the internal structure need not be the same as the ex-
ternal structure. I’ve not found that a lack of abstraction in
the use cases leads to lack of abstraction in the internals.
On the contrary, using less abstract use cases helps because
mapping an abstract internal structure to a concrete use
case helps us understand the abstraction.

Abstracting use cases can also lead to larger use cases,
which, in an iterative development, are more difficult to
plan with. You can also spend a lot of time arguing about
the abstraction—time better used elsewhere.

So my advice is to err on the side of being too concrete.
Above all, don’t go more abstract that the user can follow.
Use the concrete use cases to explain and verify your pow-
erful abstractions.

Abuse by GUI
With all the GUI painting tools out these days, more people
are using them to help determine the use cases. The logic is
appealing. A GUI is concrete to a user; it helps snag the easy-
to-forget details; it gives the user a sense of what the system
will look like; GUIs are easy to prototype; they make reason-
able demos to explain the capabilities of the future system.

I used to think that GUI prototypes were a good require-
ments tool for all these reasons. But there is a fundamental
problem. When you show a GUI prototype to a user, it looks
like nearly everything is done, that all that’s left is a bit of
wiring behind the scenes. Of course, we know that what
lurks behind the scenes is the most complicated part of the
exercise, but this is exceedingly difficult for customers to
understand. GUIs lead to a false indication of progress and
difficulty—it may be just a button on the UI, but providing
it could take weeks of effort. There’s a huge gap between the
real effort and the perceived effort, making it difficult to do
the negotiation that is so important in scope control.

And despite the fact that GUI tools seem so easy to use,
there’s always a lot of fine tuning to make it look just right.
This fine tuning sets people’s expectations in a particular
direction, making people reluctant to make changes when
a simpler design idea comes along.

So now I tell people to never show any GUI that hasn’t
got fully working code behind it. It’s still good to mock up
GUIs, but do it with pen and paper. That way you avoid the
false indication of progress.

Abuse by Denying Choice
Take a high-end word processor. Think about the use-cases.

Would you include change a style, apply a style, and import
styles from another document? The problem with these use
cases is that they don’t directly address a user’s needs. The
user’s real needs are something like ensure consistent for-
matting within a document, or make one document look
like another. I’ve characterized the former as systems use
cases and the latter as user use cases.

The problem with going directly to the system use case is
that it denies you the chance to come up with other system
use cases that would deal with this problem. You can’t use
only user use cases, however, because they don’t fit well into
the iterative scheduling process.

I’ll confess that I haven’t come up with a solid answer to
this problem. I primarily put my attention to system use
cases, for they are the most useful for iteration planning
and system testing. However with every system use case I
think about whether there is another user use case which is
sitting behind it. I keep a note of these and try to come up
with alternative system use cases.

Use cases are one of the most valuable techniques avail-
able to us. I use them all the time in my development work,
and wished I had started using them earlier. But remember
what you are using them for, and beware of these pitfalls.
And somebody please write a good book on what makes a
good use case—there’s at least one active developer who re-
ally wants to read it. k

M E T H O D S I N P R A C T I C E

DISTRIBUTED 2 Computing April 1998

