
1 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 9 . 0 0 © 2 0 0 3 I E E E

W
hen I started programming com-
puters, I began with fairly primitive
languages, such as Fortran 4 and
various early flavors of Basic. One
of the first things you learn using
such languages—indeed, even us-

ing more up-to-date languages—is which
types your language supports. Being oriented
toward number crunching, Fortran supported

integer and real types, with the in-
teresting rule that any variable
whose name started with the let-
ters I through N was an integer,
and all other variables were floats.
I’m glad that convention hasn’t
caught on, although Perl is close.
Furthermore, using object-ori-
ented languages, you can define
your own types and in the best
languages, they act just as well as
built-in ones.

Defining types
I first started playing with computers in

my math classes, where we were all frustrated
by the fact that these oh-so-numerate com-
puters didn’t understand fractions (and our
math teachers took a dim view of floating-
point approximations). I was thus delighted
to learn that Smalltalk supported fractions
naturally—if you divided 1 by 3 you got a
third, not some irritating long-running float.

When people talk about design, they of-
ten don’t talk about little objects such as
fractions, presumably because many archi-
tects consider such details unworthy of their
attention. However, defining such types of-
ten makes life easier.

My favorite example is money. A lot of
computer horsepower is dedicated to manipu-
lating money, accounting, billing, trading, and
so forth—few things burn more cycles. Despite
all this attention, no mainstream language has
a built-in type for money. Such a type could re-
duce errors by being currency aware, helping
us, for example, avoid embarrassing moments
of adding our dollars to our yen. It can also
avoid more insidious rounding errors. It
would not only remove the temptation to use
floats for money (never, ever do that) but also
help us deal with tricky problems such as how
to split $10 equally between three people. In
addition, it could simplify a lot of printing and
parsing code. For more on this (why write the
column if I can’t plug my books?), see Patterns
of Enterprise Application Architecture (Addi-
son-Wesley, 2002).

The nice thing about OO programs is
that you can easily define a type like this if
the language and libraries don’t include it.
Other such low-level types I’ve often written
are ranges, because I’m sick of writing if
(x <= top && x >= bottom), quantities
(to handle things such as “6 feet”), and
dates (at least most languages include them
now, but they are usually incorrect).

Once you start writing these kinds of fun-
damental objects, you begin to ask yourself
where to stop. For example, one person re-
cently asked me whether he should make a
type for currency, even though the only data
was the international three-letter code? An-
other person asked about a person class
with an age attribute and whether he should
return an integer or define an age type and
return that.

design

When to Make a Type
Martin Fowler

E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

J a n u a r y / F e b r u a r y 2 0 0 3 I E E E S O F T W A R E 1 3

DESIGN

When is it worth your while?
When should you make your own

type? To begin with, make a type if it
will have some special behavior in its
operations that the base type doesn’t
have. The attention to rounding in
money offers a good example: rather
than have every user of a number
class remember to round, provide the
methods in a money class so you can
program the rounding once.

Special types are handy when you
have bits of data that often go to-
gether. A range object that brings to-
gether top and bottom values is a
good example. You might argue that
if a.includes(x) isn’t much better
than if(x >= min && x <= max),
but using a range communicates that
the two values fit together. Indeed,
communication is one of the biggest
reasons to use a type. If you have a
method that expects to take a cur-
rency parameter, you can communi-
cate this more clearly by having a
currency type and using it in the
method declaration. This is valuable
even if you don’t have static type
checking, although such checking is
yet another reason to make a type.

Some types don’t want to use their
full capabilities. Often you’ll find
things such as product codes that are
numeric in form. However, even
though they look like a number, they
don’t behave like one. Nobody needs
to do arithmetic on product codes—
with a special type you can avoid
bugs, such as using someone’s per-
sonnel number in the arithmetic for
their paycheck.

That’s a common thing to watch
for. Even if a currency code looks like
a string, if it doesn’t behave like one,
it should get a different type. Look at
the string’s interface and ask how
much of it applies to a currency
code? If most of it doesn’t, then that’s
a good argument for a new type.

Validation constraints are another
factor to consider. We might want to
throw an exception if someone sets
my age to –1 or 300. Some languages
have defined types purely on the ba-
sis of ranges. Currencies often will
have a fixed list that can be defined
in terms of enums or symbolic con-

stants. The value of this depends on
how widely people create the objects.
If creating an age only occurs in the
person class, then there’s less value in
making age a class than there would
be if ages were created all over the
code base.

One of the interesting variations to
consider is system evolution. Today,
an integral age might make sense, but
suppose in six months you need to
deal with someone’s age in years and
months? Here you consider the effect
of the type on refactoring to make the
change. With your own type, chang-
ing the data structure is much easier,
just add an extra field to the age type.
If you return an integer, you have a
more involved refactoring, but you
can do it steadily in stages. First, keep
the method that returns an integer,
probably renaming it for clarity, and
provide a new method that returns the
age type. That way, older code doesn’t
have to change, but newer code can
use the new capability. Then, look at
all the uses of the integral age and,
over time, alter them to use ages
rather than integers. This could take a
matter of minutes or months. Once
you alter them all, you can remove the
integral age method.

O n the whole, I’m inclined to say
that when in doubt, make a new
type. It usually requires little ef-

fort but often provides surprising re-
sults. For a currency, even if only a
three-letter string, I’d make the type
for communication reasons. For an
age returned by a person, I’d be more
inclined to stick with the integer—
providing it wasn’t widely used and
everyone treated it as a number.
Refactoring from one type to another
isn’t a huge deal—particularly if you
make the change as soon as you real-
ize the type is going to be used
widely.

Martin Fowler is the chief scientist for ThoughtWorks, an
Internet systems delivery and consulting company. Contact him
at fowler@acm.org.

How to
Reach Us

Writers
For detailed information on submitting articles,
write for our Editorial Guidelines (software@
computer.org) or access http://computer.org/
software/author.htm.

Letters to the Editor
Send letters to

Editor, IEEE Software
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
software@computer.org

Please provide an email address or
daytime phone number with your letter.

On the Web
Access http://computer.org/software for
information about IEEE Software.

Subscribe
Visit http://computer.org/subscribe.

Subscription Change of Address
Send change-of-address requests for magazine
subscriptions to address.change@ieee.org.
Be sure to specify IEEE Software.

Membership Change of Address
Send change-of-address requests for IEEE
and Computer Society membership to
member.services@ieee.org.

Missing or Damaged Copies
If you are missing an issue or you received
a damaged copy, contact help@computer.org.

Reprints of Articles
For price information or to order reprints,
send email to software@computer.org or fax
+1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article,
contact William Hagen, IEEE Copyrights and
Trademarks Manager, at whagen@ieee.org.

How to
Reach Us

