
8 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 2 0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E

I
t’s all a question of purpose. These days,
practically everyone involved in devel-
oping software draws pictures that rep-
resent some aspect of the software or its
requirements. They do this to improve
their own understanding and, usually, to

communicate that understanding to others.
But all too often, the understanding is mud-
dled and confused because the designer

hasn’t clearly established the pic-
ture’s purpose or explained how
others should interpret it. Surpris-
ingly, this is true even when the
designer uses an established mod-
eling standard, such as the Unified
Modeling Language (UML).

For many years, it has been
common practice for database de-
signers to create logical models
and physical models. Typically, de-
signers represent a logical model

using some form of the entity-relationship
(ER) diagram, whereas they ultimately repre-
sent a physical model using a schema held by
the database engine. The important difference
is the level of abstraction: a logical model ig-
nores the constraints that the underlying data-
base technology imposes and presents a sim-
plified view.

Sometimes physical database designs are
also drawn using ER diagrams but with ex-
plicit attributes for foreign keys that repre-
sent relationships. So, when presented with
an ER diagram I’ve never seen before, I
must establish its purpose before I can un-
derstand it. Fortunately, with an ER dia-
gram, it’s usually easy to see what kind of
model this is, but in other circumstances—

especially with UML diagrams—it isn’t al-
ways so obvious.

Implementation, specification, and
conceptual models

I call a model built to explain how some-
thing is implemented an implementation
model and a more abstract model that ex-
plains what should be implemented a speci-
fication model. Both are models of software
systems, and if confusion often exists be-
tween these two models, then far greater
confusion surrounds the relationship be-
tween models of software and models of
real-world situations.

In software projects, we frequently need
to find ways of gaining a better understand-
ing of the real-world problem to be solved.
Consequently, we often produce informa-
tion models that depict the items of infor-
mation in a particular business situation and
their relationships, but two issues immedi-
ately arise.

First, what should be the scope of such
models? As we saw with the Great Corpo-
rate Data Modeling Fiasco of the 1980s and
1990s, where large enterprises invested
heavily in attempts to capture all the infor-
mation used in an organization, these mod-
els easily become so large that they are im-
possible to keep up to date. The solution to
this issue is, of course, to model only those
parts of the organization needed to repre-
sent the current situation of interest—not to
worry too much about the bigger picture.

Second, these models have no value un-
less we can directly apply their content to
system-building projects. Unfortunately, for

design

Modeling with a Sense of
Purpose
John Daniels

E d i t o r : M a r t i n F o w l e r � T h o u g h t Wo r k s � f o w l e r @ a c m . o r g

J a n u a r y / F e b r u a r y 2 0 0 2 I E E E S O F T W A R E 9

DESIGN

reasons that I will explain shortly, the
approach claiming to offer the most
assistance with this—object-oriented
design—has been slow to deliver ef-
fective processes.

I’ll refer to all models of situations
in the world—of which information
models are one example—as concep-
tual models; other terms that are
used include essential models, do-
main models, business models, and
even, most confusingly in my view,
analysis models. So we have three
kinds of models (see Figure 1) for
quite different purposes:

� Conceptual models describe a situ-
ation of interest in the world, such
as a business operation or factory
process. They say nothing about
how much of the model is imple-
mented or supported by software.

� Specification models define what a
software system must do, the in-
formation it must hold, and the be-
havior it must exhibit. They as-
sume an ideal computing platform.

� Implementation models describe
how the software is implement-
ed, considering all the computing
environment’s constraints and
limitations.

Most of the modeling I’ve done has
been in the field of object and compo-
nent systems, where opportunities for
confusion between these three model-
ing perspectives are particularly large.
This is because with object-oriented
software, we are always striving to
make the software elements that make
up our program (classes, in most ob-
ject-oriented languages) correspond
closely to problem-domain concepts
with similar names. So, if our concep-
tual model contains the concept of
customer, our software will contain
direct representations of customers,
and our software customers will have
similar attributes to their real-world
counterparts.

We want this correspondence be-
cause it improves traceability between
requirements and code, and because it
makes the software easier to under-
stand. In this respect, object-oriented
programming has been a great suc-

cess, but the yearning for this corre-
spondence between the conceptual
and implementation models has over-
simplified the process of moving be-
tween them. One reason why this
process is more complicated than
we’d like is that, given the complexity
of modern layered application archi-
tectures, we find different representa-
tions of the same concept in many dif-
ferent parts of the application.

Notation overload
The examples we’ve looked at so

far—information models and data-
base models—are concerned with

modeling the structure of things; life
gets much more complicated when
we attempt to model behavior. If we
construct an implementation model
of an object-oriented program—for
example, one written in Java—we as-
sume that software objects cooperate
by sending each other synchronous
messages. It might or might not be
satisfactory to adopt the same para-
digm when creating specification
models of object systems, but that
paradigm is certainly useless if we
want to capture the world’s concur-
rent and unpredictable nature in a
conceptual model.

Despite these obvious problems,
many methodologists devising ways
of designing object-oriented systems
during the late 1980s and 1990s per-
sisted with the claim that conceptual
models could be built using only the
concepts of object-oriented program-
ming. Furthermore, they claimed that
the process of moving from concep-
tual model to code was one that sim-
ply involved elaboration rather than
mapping or translation. Although
we’ve since learned the hard way that
this is too simplistic, that realization
hasn’t been manifested in the model-
ing notations we use or in the way
people are often taught to use them.

Consider, for example, the facilities
in the UML for describing software
structure. The primary and ubiquitous
notation for this is the class diagram,

Given the complexity
of modern layered

application
architectures, we

find different
representations of the
same concept in many
different parts of the

application.

Figure 1. Three modeling perspectives.

World Specification Software

Built to understand,
interpreted as

statements of fact

Built to specify,
interpreted as
constraints on

behavior

Built to explain,
interpreted as
descriptions of

behavior

Systematic correspondence

Conceptual model Specification model Implementation model

Model of the
world

Abstract model
of software

Model of
software

1 0 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 2

DESIGN

and we should be pleased that this rel-
atively simple notation has proved
useful for depicting everything from
the structure of Web sites to the layout
of XML documents. But its generality
is part of the problem. Even within
the limited scope of a single develop-
ment project, you’ll typically find
class diagrams used for a range of
purposes, including the structural as-
pects of all three kinds of models dis-
cussed earlier. Figure 2 illustrates this
with a simple example. In the concep-
tual model, we are happy to use mod-
eling features that aren’t generally
supported by programming environ-
ments, such as dynamic subtyping. In
the implementation model, we use
only features that our chosen lan-
guage directly supports, and we show
implementation choices such as the
use of the strategy pattern here.

The same applies to all UML no-
tations. Table 1 shows how I use the
main UML notations within each
kind of model. A blank cell indicates
that I don’t use that notation within
that kind of model, but surely you’ll
be able to find someone who does. So
it’s vital that whenever you use one
of these notations, you indicate
clearly both what kind of model this
is part of and precisely what you’re
trying to depict.

The UML would be much better if
it had a built-in understanding of the
three kinds of model and at least in-
sisted that you state which one you
are building. Unfortunately, it doesn’t,
so unless you are lucky enough to be
working with UML tools that support
profiles, the best you can do is use
UML’s stereotype feature to mark
model elements appropriately.

S o, if a class diagram depicting an in-
formation model is, despite appear-
ances, saying something fundamen-

tally different from a class diagram
specifying the chosen object structures
in our software, doesn’t that just make
life more difficult and confusing? No.
By having these strong distinctions, we
can model at different levels of abstrac-
tion at different times and separate the
concerns that apply at the different lev-
els. To get these benefits, though, mod-
elers must be very clear in their minds
about the different perspectives pro-
vided by the three kinds of models, and
my experience is that even many expe-
rienced developers have yet to think
clearly about all this. They need to get
a sense of purpose.

John Daniels is a consultant at Syntropy Limited. Contact
him at john@syntropy.co.uk.

Conceptual
model

<<concept>>
Order

deliveryCharge: Money

<<concept>>
UrgentOrder

deliveryCharge: Money<<dynamic>>

Specification
model

<<type>>
Order

deliveryCharge: Money
isUrgent: Boolean

beUrgent()

Implementation
model

<<class>>
Order

deliveryCharge(): Money
isUrgent(): Boolean
beUrgent()

<<class>>
DeliveryStrategy

getCharge(): Money

<<class>>
RegularDelivery

getCharge(): Money

<<class>>
UrgentDelivery

getCharge(): Money

1

Figure 2. One notation, three
models.

Table 1

Using the main UML notations with conceptual, specification,
and implementation models

Diagrams Conceptual model Specification model Implementation model
Use case — Software boundary interactions —
Class Information models Object structures Object structures
Sequence or collaboration — Required object interactions Designed object interactions
Activity Business processes — —
Statechart Event-ordering constraints Message-ordering constraints Event or response definitions

