
2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

I
t should come as no surprise that I’m a
big fan of software patterns. After all, I
just finished my second book on the
subject, and you don’t put forth that
kind of effort without believing in what
you’re doing. Working on the book,

however, reminded me of many things about
software patterns that are not fully under-
stood, so this seemed like a good time to

talk about them.
The biggest software patterns

community is rooted in the object-
oriented world. This community
includes the people who wrote the
classic Gang of Four book (E.
Gamma et al., Design Patterns,
Addison-Wesley, 1995) and the
Hillside group that organized the
worldwide PloP (Pattern Lan-
guages of Programs) conferences
(see http://hillside.net). Most pat-

terns books have come out of this commu-
nity—but not all. There are good books, such
as David Hay’s Data Model Patterns (Dorset
House, 1996), written by people who’ve had
little or no contact with this group.

Even with the Hillside group, there’s a lot
of disagreement about what’s important
about patterns—and that mix of views
grows even larger with those who don’t get
involved in the Hillside group’s efforts. So
there are many opinions on what makes a
pattern important. Following are my views.

Why patterns interest me
Patterns provide a mechanism for render-

ing design advice in a reference format. Soft-
ware design is a massive topic, and when

faced with a design problem, you must be
able to focus on something as close to the
problem as you can get. It’s frustrating to find
an explanation of what I need to do buried in
a big example that contains 20 things that I
don’t care about but must understand to
complete the thing I do care about.

So for me an important problem is how
to talk about design issues in a relatively en-
capsulated way. Of course it’s impossible to
ignore all the inter-relationships, but I prefer
to minimize them. Patterns can help by try-
ing to identify common solutions to recur-
ring problems. The solution is really what
the pattern is, yet the problem is a vital part
of the context. You can’t really understand
the pattern without understanding the prob-
lem, and the problem is essential to helping
people find a pattern when they need it.

Similarly, abstract discussions of princi-
ples—which I often write about in this col-
umn—are important, but people need help
applying these principles to more concrete
problems.

When people write patterns, they typically
write them in some standardized format—as
befits a reference. However, there’s no agree-
ment as to what sections are needed because
every author has his or her own ideas. For
me, there are two vital components: the how
and the when. The how part is obvious—
how do you implement the pattern? The
when part often gets lost. One of the most
useful things I do when understanding a pat-
tern, one I’m either writing or reading, is ask,
“When would I not use this pattern?” Design
is all about choices and trade-offs; conse-
quently, there usually isn’t one design ap-

design

Patterns

Martin Fowler

E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

M a r c h / A p r i l 2 0 0 3 I E E E S O F T W A R E 3

DESIGN

proach that’s always the right one to
use. Any pattern should discuss alter-
natives and when to use them rather
than the pattern you’re considering.

One of the hardest things to ex-
plain is the relationship between pat-
terns and examples. Most pattern de-
scriptions include sample code
examples, but it’s important to real-
ize that the code examples aren’t the
pattern. People considering building
patterns tools often miss this. Pat-
terns are more than macro expan-
sions—every time you see a pattern
used, it looks a little different. I often
say that patterns are half-baked—
meaning you always have to finish
them yourself and adapt them to
your own environment. Indeed, im-
plementing a pattern yourself for a
particular purpose is one of the best
ways to learn about it.

Patterns and libraries
This raises an interesting point—if

a pattern is a common solution, why
not just embed it into libraries or a lan-
guage? Then people wouldn’t need to
know the pattern. Certainly, embed-
ding patterns into libraries is com-
mon—indeed, usually, it’s the other
way around. Pattern authors see many
libraries doing a similar thing and con-
sequently identify the pattern. This
provides value in several ways.

First of all, it can help people un-
derstand how the library feature
works to extract the library’s specific
context. A library typically combines
many things at once, so again you
run into the problem of having to un-
derstand a dozen things. A well-writ-
ten set of patterns can help explain
these concepts.

Second, people often move be-
tween programming environments,
so they might be familiar with a par-
ticular solution but not how to im-
plement it in a new environment. Un-
derstanding the underlying pattern
behind library features helps a great
deal in making this connection.

Finally, even if a library imple-
ments a pattern, you must still decide
how to use it. You might also need to
know more about what implementa-
tion strategies the library uses and

whether they are appropriate for a
particular problem. A library can
only implement the “how” part of a
pattern—you still have to answer the
“when.” In this case, the presence of
a library implementation alters the
trade-off. If a library implements a
solution that isn’t ideal, you can still
choose to use it rather than imple-
ment the ideal one yourself.

Patterns and the expert
One of the hardest things about

patterns is that they are, by definition,
nothing new. If you’ve been working
in a field for a while and have become
very skilled in it, then a patterns book
in that field shouldn’t teach you any-
thing new. Are patterns at all valuable
to experts? They obviously offer less
value to experts than to someone
coming to grips with the field, but
there is still something to be gained by
looking at patterns that merely cap-
ture what you already know.

The primary value is that they can
help you teach those around you. For
me, the driving force behind writing
comes from seeing that there’s
knowledge to be shared. An expert in
a team can use written patterns to
help educate other team members.
The expert can help the team review
the general case, which will come
with simplified and encapsulated ex-
amples, but more importantly, he or
she can then show the team how the
patterns should or shouldn’t be used
in the project at hand. So if you’re an

expert in your field, you might rate
the quality of a patterns book based
on how it helps you teach your col-
leagues rather than on what you
learned from it.

The other value of patterns to ex-
perts is as a standard vocabulary. In
the OO world, we can talk about sin-
gletons, strategies, decorators, and
proxies, confident that a moderately
experienced designer will have a
good chance of understanding what
we mean without a lot of extra ex-
planation. This vocabulary makes it
easier to discuss our designs.

Overuse
One of the things that can be a

problem is that people can think that
patterns are unreservedly good and
that a test of a program’s quality is
how many patterns are in it. This
leads to the apocryphal story of a
hello world application with three
decorators, two strategies, and a sin-
gleton in a pear tree. Patterns are not
good or bad—rather, they’re either
appropriate or not for some situa-
tions. I don’t think it’s wrong to ex-
periment with using a pattern when
you’re unsure, but you should be pre-
pared to rip it out if it doesn’t con-
tribute enough.

I don’t subscribe to the opinion that
there are few remaining patterns to
gather. In both of my patterns

books, I felt I did little more than
scratch the surface. There is more
room for people to look at the sys-
tems that were built and try to iden-
tify and describe the patterns in-
volved. This strikes me as an ideal
task for academia, although, sadly,
the fact that patterns are by defini-
tion nothing new seems to make that
impossible.

As a field we have much to learn,
which is why software development
is so much fun. But I think it’s frus-
trating when we don’t take the time
to learn from our own efforts

Martin Fowler is the chief scientist for ThoughtWorks, an
Internet systems delivery and consulting company. Contact him
at fowler@acm.org.

I often say that patterns
are half-baked—

meaning you always
have to finish them
yourself and adapt
them to your own

environment.

