
1 8 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 2 0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E

I
n its first release of the .NET Frame-
work, Microsoft has provided a de-
fined method for adding declarative in-
formation (metadata) to runtime enti-
ties in the platform. These entities in-
clude classes, methods, properties, and

instance or class variables. Using .NET, you
can also add declarative information to the
assembly, which is a unit of deployment that
is conceptually similar to a .dll or .exe file.
An assembly includes attributes that de-
scribe its identity (name, version, and cul-
ture), informational attributes that provide
additional product or company informa-
tion, manifest attributes that describe con-
figuration information, and strong name at-
tributes that describe whether the assembly
is signed using public key encryption. The
program can retrieve this metadata at run-
time to control how the program interacts
with services such as serialization and secu-
rity. Here, we compare design decisions
made using custom attributes in .NET with
the Java platform.

Marker interfaces
In the Java platform there is a common

design trick called marker interfaces. A
marker interface has no methods or fields
and serves only to identify to the Java Vir-
tual Machine (JVM) a particular class at-
tribute. Here is one example:

public interface Serializable {}

If the class that you are writing must be se-

rializable, then it must implement the inter-
face as follows:

public class MyClass implements

Serializable

Serialization might have certain behav-
iors associated with it that the class devel-
oper wants to control. However, Java doesn’t
explicitly associate such behavior with the
interface that represents the serialization
contract. At runtime, when the program
tells the JVM to serialize this class, it looks
to see if the class has implemented the inter-
face. It also looks to see if the class has de-
fined any special methods associated with
the serializable interface but not directly de-
clared in it, such as readResolve, read-
Object, or writeObject.

The JVM relies on a naming convention
and method signatures to locate the methods
via reflection; if it finds them, it invokes
them. The interface itself does not specify
any methods, because implementors might
then unnecessarily implement methods in the
simplest case. Because the interface doesn’t
explicitly specify the methods used to control
the process and thus might incorrectly spec-
ify the method signature, this mechanism is
prone to failure. Unfortunately, no compile
time check will identify this as an error.

.NET solves this problem by being ex-
plicit. In the simplest case, where the pro-
grammer wants to rely on the provided ca-
pability to serialize an object, there is a
class-level attribute called Serializable

design

How .NET’s Custom
Attributes Affect Design
James Newkirk and Alexei A. Vorontsov

E d i t o r : M a r t i n F o w l e r � T h o u g h t Wo r k s � f o w l e r @ a c m . o r g

S e p t e m b e r / O c t o b e r 2 0 0 2 I E E E S O F T W A R E 1 9

DESIGN

that marks a class as having that ca-
pability. For example,

[Serializable()]

public class MyClass {}

Marking a class serializable implies
nothing else. If the programmer
wants to completely control the seri-
alization process, then he or she must
also implement an interface called
ISerializable, specifying the meth-
ods used to control serialization (see
Figure 1). At runtime, when the pro-
gram tells the Common Language
Runtime to serialize a class, the CLR
looks to see if the class was marked
with SerializableAttribute.

The Java and .NET approaches
are similar in intent, but .NET’s use
of attributes is more explicit. Con-
trary to an interface’s basic purpose,
the marker interface reuses an exist-
ing language construct interface to
represent what the attribute repre-
sents. According to the Java Lan-
guage Specification (2nd ed., Addi-
son-Wesley, 2000),

An interface declaration intro-
duces a new reference type whose
members are classes, interfaces,
constants and abstract methods.
This type has no implementation,
but otherwise unrelated classes can
implement it by providing imple-
mentations for its abstract methods.

Stylistic naming patterns
At the method level, it is common in

the Java platform to use naming con-
ventions to identify a special method. By
virtue of the name, the program finds
the method at runtime using reflection.
Once found, the executing program spe-
cially interprets this method. For exam-
ple, when a programmer defines
a test method in JUnit—a popular unit-
testing framework for Java (www.
junit.org)—the first four letters of a test
method must be test (see Figure 2a).
The program that executes the tests first
verifies that the class inherits from
TestCase. Then, using reflection, it
looks for any methods that start with
Test. In the code in Figure 2a, the pro-

gram finds and calls
testSuccess.

The code in Figure
2b demonstrates a
common design id-
iom used in JUnit
when the program-
mer wants to verify
that the code throws
an exception. Unfor-
tunately, the pro-
grammer will dupli-
cate such code in
every test case that
expects an exception,
and the idiom is not
as intuitive as you
might expect.

Having the testing
framework support
such a common case
directly would be
nice. However, rely-
ing on the naming convention could
lead to some variation of the code in
Figure 2c. In this case, we use a nam-
ing convention to specify not only a
test method but also additional infor-
mation about how to interpret the
test result. We expect that this
method’s execution will throw MyEx-
ception. This example might seem
somewhat ridiculous, but it demon-
strates the limitations of naming con-
ventions, because of how much infor-
mation the name itself can convey. In
fact, JUnit doesn’t implement the
functionality to check boundry condi-
tions in this way. Other approaches
used in Java (such as JavaDoc tags)
can provide additional information.
However, they are not present at run-
time and usually require preprocess-
ing the code to identify and process
the tags.

In .NET, stylistic naming patterns
are not needed because, in addition
to attributes that the Framework
specifies, a programmer can create
custom attributes that are defined
and used in the same way. These at-
tributes are not just names but are
instances of classes that might have
additional data. Figure 3a shows a
similar test class defined with Nunit
(www.nunit.org), a unit testing tool
for the .NET platform. Nunit, a de-

rivative of JUnit, supports all lan-
guages in the .NET framework and
uses attributes at the class and
method levels. The class attribute is
called TestFixture; it tells the pro-
gram that runs the tests to look for
test methods in this class. A Test at-
tribute then identifies test methods.
This overall solution makes for a
more consistent approach.

In addition, this solution is more
extensible because more than one at-
tribute can be associated with a
method, and attributes can have ad-
ditional data. For example, Nunit
has another attribute defined for a
method that expects an exception.
This leaves the name not only unen-
cumbered by the context in which it
is run but also more relevant to what
is being tested (see Figure 3b).

A ttributes in .NET provide an ele-
gant, consistent approach to
adding declarative information to

runtime entities. Because the runtime
entities interact with the supporting
services via declarative information,
the set of services and supporting at-
tributes does not have to be closed.
By providing a standard mechanism
to extend built-in metadata with cus-

Figure 1. Implementing the IISSeerriiaalliizzaabbllee
interface, which specifies the methods for
controlling serialization.

[Serializable()]

public class MyClass : ISerializable

{

public MyClass(

SerializationInfo info,

StreamingContext context)

{

// ...

}

public void GetObjectData(

SerializationInfo info,

StreamingContext context)

{

// ...

}

}

2 0 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 2

DESIGN

tom attributes, .NET lets program-
mers develop applications that can
interact with services not yet defined
or supported by CLR. In fact, Nunit
version 2.0 was written with custom
attributes and provides much of the
flexibility we’ve demonstrated here.

In contrast, the most common ad
hoc mechanisms in Java to add de-
clarative information include marker
interfaces, stylistic naming patterns,
and JavaDoc tags. These inconsis-
tently solve the problem of adding
declarative information to runtime
entities. They are also error prone
and too simplistic for today’s appli-
cations. The Java community recog-
nizes this limitation and has started
working on JSR-175 (see www.jcp.
org/jsr/detail/175.jsp), which speci-
fies a similar facility for Java that is
already in .NET.

James Newkirk is a software project manager for
Thoughtworks. He has been working with the .NET Framework
since its introduction in the summer of 2000. Contact him at
jim@nunit.org.

Alexei A. Vorontsov is a software technical lead for
Thoughtworks. He has worked on an enterprise transforming
application for the past three years. Contact him at alexei@
nunit.org.

Figure 3. A test class (a) defined with Nunit and (b) with another
attribute defined for a method that expects an exception.

[TestFixture]
public class MyClass
{

[Test]
public void Success()
{ /* ... */ }

}
(a)

[TestFixture]
public class MyClass

{
[Test]
[ExpectedException(typeof(MyException))]
public void Success()
{ /* would throw my exception */ }

}
(b)

Figure 2. (a) A test method in JUnit (the method’s first four letters
must be tteesstt); (b) a test for the boundary conditions that verify that
an exception is thrown when expected; (c) a naming convention to
specify not only a test method but also some additional information
about how to interpret the test result.

public class MyClass extends TestCase
{

public void testSuccess()
{ /* ... */ }

}
(a)

public class MyClass extends TestCase
{

public void testMyException()
{

try {
/* code that throws exception */
fail(“Code should have thrown MyException”);

}
catch(MyException e)
{ /* expected exception — success */ }

}
}

(b)

public class MyClass extends TestCase
{

public void testSuccess_ExpectException_MyException()
{ /* ... */ }

}
(c)

FUTURE TOPICS:

The Business of
Software Engineering

Software Inspections

Usability

Internationalization

FUTURE TOPICS:

The Business of
Software Engineering

Software Inspections

Usability

Internationalization

IEEE

http://computer.org/software

Visit us
on the
web

Visit us
on the
web

