
2 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

design
E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

T
he OMG’s Model Driven Architecture
(www.omg.org/mda) is an ambitious ef-
fort to build programs from models us-
ing model transformations.1 I believe
that model-driven agile development is
an effective software development prac-

tice, but I have concerns about the proposed
MDA. I agree with others—such as Martin
Fowler, Steve Cook, Scott Ambler, and Jean
Bézivin (see the “Related Work” sidebar)—

that we should neither naively ac-
cept nor cavalierly reject MDA
without the broader software com-
munity first appropriately examin-
ing and evaluating them.

On modeling
Modeling is at the core of many

disciplines, but it is especially im-
portant in engineering because it fa-
cilitates communication and con-
structs complex things from smaller

parts. Since at least Simula 67 (one of the first
object-oriented languages), many have viewed
software development as the development and
refinement of models. Models facilitate the un-
derstanding, simulation, and emulation of the
artifacts under development. Depending on
model paradigms and cognitive styles, engineers
express models using diagrams, structured text,
and storyboards of one form or another.

Software modelers depend on and use engi-
neering analogies but often fail to understand
them. Engineers realize that the models aren’t
the product: they’re abstractions of the prod-
uct. In fact, in most cases, the models are only

partial abstractions of the product, used to
highlight important aspects that the engineer
should know about the product. The term ex-
ecutable specification is an oxymoron—if the
specification were truly executable, it would
actually be “the thing.” Otherwise, it would
merely model “the thing,” which is by defini-
tion partial and incomplete.

UML: The good, the bad,
and the ugly

Software engineering welcomed the OMG’s
intervention to stop the silliness in notation,
just as other, more mature disciplines have wel-
comed similar interventions. The good in UML
is that it provides a common and useful visual
notation for describing many of the software
artifacts used in modern OO analysis, design,
and development.2 Tools also help generate
code templates and reverse generate diagrams
from code. Recent additions such as Way-
pointer (www.jaczone.com/product/overview)
and CodaGen (www.codagen.com) provide
rule-based support for software processes and
code generation. The industry uses UML per-
vasively to document and discuss software de-
signs. Additionally, tools that will one day
have the usability and productivity of real
drawing tools support UML.

The software community naturally as-
sumed tool interchange and interoperability
would be the OMG’s next contribution. But
here’s where we move from the good to the
bad. The OMG dropped the ball and ex-
pended no serious efforts on tool interoper-
ability. Nor was there any follow-through on

MDA: Revenge of the
Modelers or UML Utopia?
Dave Thomas

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 2 3

DESIGN

developing reasonable structured syn-
tax for UML artifacts. This says a lot
about tool vendors’ power at the OMG
and underlies some of the real prob-
lems with UML evolution and MDA it-
self. XMI Metadata Interchange ap-
pears to be a backdoor project from
the Meta Object Facility efforts, with a
scramble to embrace XML. MOF ef-
forts continue on a “human-readable
notation.” The name says it all!

And now we move to the ugly. It’s
well known that language design by
committee, especially with the techno
politics of coopetition between vendors
and personal brands, is unlikely to pro-
duce a well-designed language. For ex-
ample, the Activity concept is one of
those political compromises in UML
1.0, and it’s been elevated to a metaclass
for capturing all behavior in UML 2.0.3

UML 2.0 lacks both a reference im-
plementation and a human-readable
semantic account to provide an opera-
tional semantics, so it’s difficult to in-
terpret and correctly implement UML
model transformation tools. For exam-
ple, key concepts such as Use Cases
lack sufficient semantics to support
model refinement. Why not provide a
simple accessible operational semantic
account, perhaps through a metacircu-
lar interpreter? The revised Scheme re-
port and the annotated reference speci-
fications of Pascal and XML facilitate
a serious external review in the lan-
guage and modeling community. Such
a semantic account would no doubt
point out semantic holes and ambigui-
ties, leading to an improved specifica-
tion and reducing the time required to
build robust MDA tools.

In principle, the process is open to
including missing items, such as script-
ing, decision tables, higher-order func-
tions, relations, a proper type system,
and initialization and finalization.
However, the reality is that vendor iner-
tia, usually in implementing standards,
typically makes version 2.0 the last real
version for many years. Many in the ex-
ecutable-UML crowd apparently work
in domains that only require state ma-
chines, so they might have a vested
commercial interest in UML remaining

less than a complete language (see www.
jot.fm/issues/issue_2003_01/column1).

Model engineering
Using metamodels is powerful and is

very useful for self-description. Meta-
models form the foundation of model
engineering,1 of which MDA is a spe-
cific exemplar. Model engineering, or
model-driven development, treats soft-
ware development as a set of transfor-
mations between successive models
from requirements to analysis, to de-
sign, to implementation, to deployment.

Model-driven development, as pop-
ularly practiced in Simula, Smalltalk,
Lisp, Haskell, APL, and so forth, views
models as useful partial descriptions
that people transform, with tools, into
programs. Agile development’s essence
is that it emphasizes people’s impor-
tance in not only the modeling process
but also the transformation process.

Model-engineering (www.metamodel.
com/wisme-2002) advocates usually ar-
gue that we can almost completely au-
tomate the model transformation
process using a catalogue of model
transformations that convert one
model to another. Research is promis-
ing in this area, which, like compila-

tion and code generation before it, will
no doubt yield some interesting tech-
niques for program refinement.

MDA further specializes the model-
engineering approach to using the
MOF and associated UML models.
The OMG MOF plays a key role in
MDA because it’s the Holy Grail that
unifies UML, UML profiles, and hence
MDA platform-specific models.

Metamodels
Modern metamodeling has its foun-

dation in computational-reflection work,
although for many years, databases, op-
erating systems, languages, and tools
contained self-descriptions that today we
often call schemas, metadata, or meta-
classes. Metamodeling is, in many ways,
the computational equivalent of the phi-
losophy of self—defining concepts and
expressing them at the right level in the
reflective tower is difficult and requires a
lot of mental precision. Does a particular
concept belong in the model, the meta-
model, or the meta metamodel?

IBM’s AD/Cycle used entity-relation-
ship models (the UML of that era born
again as the Object Modeling Tech-
nique) to define a grand unified meta-
model, called the Information Model.

Related Work

For more information on Model Driven Architecture, see

■ D.S. Frankel, Model Driven Architecture: Applying MDA to Enterprise Com-
puting, John Wiley & Sons, 2003

■ S.J. Mellor and M.J. Balcer, Executable UML: A Foundation for Model Driven
Architecture, Addison-Wesley, 2002

To learn what Martin Fowler, Steve Cook, Steve Ambler, and Jean. Bézivin say
about MDA, see

■ M. Fowler, “Model Driven Architecture,” 2004, http://martinfowler.com/
bliki/ModelDrivenArchitecture.html

■ S. Cook, “Domain Specific Modeling and Model Driven Architecture,” 2004,
www.bptrends.com/publicationfiles/01-04%20COL%20Dom%20Spec%
20Modeling%20Frankel-Cook.pdf

■ S. Ambler, “Model Driven Architecture is Ready for Prime Time,” IEEE Soft-
ware, Sept./Oct. 2003, pp. 71–73.

■ J. Bézivin, “MDA: From Hype to Hope, and Reality,” invited talk, UML 2003;
www.sciences.univ-nantes.fr/info/perso/permanents/bezivin/UML.2003/
UML.SF.JB.GT.ppt

2 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

AD/Cycle let all methodologists of the
day map their concepts, proven or not,
into the IM. For example, we could suc-
cessfully map OO concepts such as ob-
jects, methods, and packages into the IM
with little difficulty simply by interpret-
ing the IM in our own way and over-
loading an existing metaconcept. This let
us store OO models in an IM that actu-
ally had no idea what an object was.

The key point is that metamodels let
you easily add new concepts. However,
they don’t ensure that these concepts
make semantic sense, nor do they ensure
that different metamodels (such as UML
profiles) are consistent or orthogonal.

Platform-specific models
A critical component of successful

MDA tooling is the existence of sound
platform independent models and plat-
form-specific models1 for various target
platforms such as J2EE, J2ME, MS.NET
Windows and Compact Frameworks,
and Linux Apache. PSMs must model
the target platforms with sufficient preci-
sion to allow model transformations
from UML PIMs to code.

For restricted behaviors, such as state
machine models, creating PIMs and
PSMs are relatively easy. PIMs describe a
limited form of behavior that is useful
for an application’s specific domains.
However, a state machine or OMT mod-
els alone can describe few complete ap-
plications. Furthermore, we hardly need
MDA to generate code from a state ma-
chine or entity-relationship models be-
cause these have existed for years!

However, it is distinctly nontrivial—
many would argue impossible—to sup-
port and evolve semantically correct
PSMs for platforms such as J2EE or
.NET. These platforms contain thou-
sands of APIs, many of which are
poorly documented or don’t conform to
the textual specifications that partially
describe them. Add to this the layers of
middleware and enterprise applications
such as SAP, Oracle, and Peoplesoft,
and we have a mountain of software
that lacks any comprehensive model.

Furthermore, even if through some
Herculean effort we could produce
such a PSM, it would no sooner be

available than the vendor’s next release
would render it outdated. We have
decades of experience building auto-
mated code generators for compilers
and yet still find it challenging to build
a code generator for the Itanium
processor, let alone for an Itanium run-
ning a particular vendor’s OS, JVM,
J2EE, and middleware. The accidental
complexity of the stack makes a com-
prehensive PSM virtually impossible.

Some MDA proponents respond
that they generate the code from the
model and then let the developers deal
with the remaining specifics of plat-
forms, libraries, and legacy interfaces.
This is a nightmare because now the
poor developer, misled by the “all you
need is UML” hype, is stuck having to
debug and develop code that a tool
generated. They are forced to dive deep
into the most difficult part of the de-
velopment cycle—using a specific-plat-
form API.

Domain-oriented
programming and domain-
specific languages

We must pay more attention to
methods, tools, and models that di-
rectly support domain-oriented pro-
gramming.4 UML is useful for many IT
applications or telecom style systems
that we can substantially describe us-
ing OMT or Object Chart style specifi-
cations. It provides little leverage for a

biologist, process control engineer,
hedge fund analyst, or other domain
specialist whose primary interest is in
modeling directly in the application
domain rather than in learning IT spe-
cialists’ lingua franca, be it UML or
Java. Domain-specific languages lift the
platform’s level, reduce the underlying
APIs’ surface area, and let knowledge-
able end users live in their data without
complex software-centric models and
the API field of dreams.

M any have tried to build rich, com-
prehensive, unified models and
languages including PL/I, Algol

68, i-Case (such as AD/Cycle), and
ADA.5 In each case, they were well mo-
tivated, basing their models on leading-
edge ideas. However, these models
were unsuccessful due to their latent
complexity, lack of interoperable im-
plementations, the accidental complex-
ity of real platforms, and the rapid rate
of change in the industry. MDA, as cur-
rently defined and espoused, will likely
meet the same fate. However, used in
moderation and where appropriate,
UML and MDA code generators are
useful tools, although not the panaceas
that some would have us believe.

References
1. A. Kleppe, J. Warmer, and W. Bast, MDA Ex-

plained: The Model Driven Architecture-Prac-
tice and Promise, Addison-Wesley, 2003.

2. M. Fowler and K. Scott, UML Distilled: A
Brief Guide to the Standard Object Modeling
Language, Addison-Wesley, 1999.

3. M. Bjorkander and C. Kobryn, “Architecting
Systems with UML 2.0,” IEEE Software,
July/Aug. 2003, pp. 57–61.

4. D. Thomas and B.M. Barry, “Model Driven
Development: The Case for Domain Oriented
Programming,” Companion of the 18th An-
nual ACM SIGPLAN Conf. Object-Oriented
Programming, Systems, Languages, and Ap-
plications, ACM Press, 2003, pp. 2–7.

5. T. Hoare, “The Emperor’s Old Clothes: The
ACM Turing Award Lecture,” Comm. ACM,
vol. 24, no. 2, 1981, pp. 75–83.

Dave Thomas is cofounder of Bedarra Research Labs
(www.bedarra.com) and OpenAugment Consortium (www.ope-
naugment.org), and an adjunct professor at Carleton University,
Canada and the University of Queensland, Australia. He is also a
founding director of AgileAlliance.com and founder of Object-
Technology International (www.oti.com). Contact him at
dave@bedarra.com; www.davethomas.net.

Used in moderation
and where appropriate,

UML and MDA code
generators are useful
tools, although not the
panaceas that some

would have us believe.

