
10 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E

design
E d i t o r : M a r t i n F o w l e r � T h o u g h t Wo r k s � f o w l e r @ a c m . o r g

design

S
oftware is an odd medium in which
to construct something. Because few
physical forces make you design one
way or another, many design deci-
sions sadly resist any form of objec-
tive analysis. Where design counts is

often not in how the software runs but in
how easy it is to change. When how it runs
is important, ease of change can be the
biggest factor in ensuring good performance.

This drive toward change-
ability is why it’s so important
for a design to clearly show
what the program does—and
how it does it. After all, it’s hard
to change something when you
can’t see what it does. An inter-
esting corollary of this is that
people often use specific designs
because they are easy to change,
but when they make the pro-
gram difficult to understand, the

effect is the reverse of what was intended.

Attributes and dictionaries
Let’s say we want a person data structure.

We can accomplish this by having specific
fields, as Figure 1 shows. Of course, to make
this work, we must define the variables in the
person class. Like many modern languages,
Ruby provides a dictionary data structure
(also knows as a map, associative array, or
hash table). We could use Ruby instead to
define the person class, using the approach in
Figure 2. (This is slower, but let’s assume this
section of code isn’t performance critical.)

Using a dictionary is appealing because it
lets you change what you store in the person
without changing the person class. If you
want to add a telephone number, you can do
it without altering the original code.

Despite this, the dictionary doesn’t make it
easier to modify the code. If I’m trying to use
the person structure, I can’t tell what is in it.
To learn that someone’s storing the number of
dependents, I must review the entire system. If
the number of dependents is declared in the

To Be Explicit
Martin Fowler

Figure 1. Explicit
fields (using Ruby).

class Person

attr_accessor :lastName, :firstName, :numberOfDependents

end

def frag1

martin = Person.new

martin.firstName = “Martin”

martin.lastName = “Fowler”

martin.numberOfDependents = 1

print (martin.firstName, “ “, martin.lastName, “ has “,

martin.numberOfDependents, “ dependents”)

end

class, then I only have to look in the
person class to see what it supports.

The key principle is that explicit
code is easier to understand—which
makes the code easier to modify. As
Kent Beck puts is, the explicit code is
intention revealing.

This dictionary example is small
in scale, but the principle holds at al-
most every scale of software design.

Events and explicit calls
Here’s another example, on a

slightly bigger scale. Many platforms
support the notion of events to com-
municate between modules. Say we
have a reservation module that, when
canceled, needs to get a person mod-
ule to send email to that person.

We can do this using an event, as Fig-
ure 3 shows. We can define interesting

events that affect a reservation, and any
object that wants to do anything when
an event occurs can build a handler to
react when it occurs. This approach is
appealing because you need not modify

the reservation class to get something
else to happen when you cancel a reser-
vation. As long as other objects put
handlers on the event, it’s easy to extend
the behavior at these points.

Figure 2. Dictionary fields (using
Ruby). class Person

attr_accessor :data

def initialize()

@data = {}

end

end

def frag2

martin = Person.new

martin.data[“firstName”] = “Martin”

martin.data[“lastName”] = “Fowler”

martin.data[“numberOfDependents”] = 1

print (martin.data[“firstName”],“ “,

martin.data[“lastName”], “ has “,

martin.data[“numberOfDependents”],

“ dependents”)

end

Figure 3. Cancellation using events (using C#).

public delegate void ReservationHandler (IReservation source);

public class Reservation ...

public String Id;

public event ReservationHandler Cancelled;

public Person client {

get {

return client;

}

set {

value.AddReservation(this);

}

}

public void Cancel(){

Cancelled (this);

}

public class Person ...

public String EmailAddress;

public readonly ArrayList reservations;

public void SendCancellationMessage(Reservation arg) {

// send a message

}

public void AddReservation(Reservation arg) {

//invoke SendCancellationMessage when the cancelled event occurs on arg

arg.Cancelled +=

new ReservationHandler(SendCancellationMessage);

}

N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 11

However, there is a cost to using
events—I can’t see what happens at
cancellation by reading the code in the
cancellation method. To find out what
happens, I have to search for all the
code that has a handler for the event.
The explicit code for this (see Figure 4)
clearly shows in the cancel method the
consequences of cancellation, at the
cost of modifying the reservation class
when I need to change the behavior.

I’ve seen a few code examples that
use events heavily, and the problem is

that it’s hard to determine what the
program does when you call a
method. This becomes particularly
awkward when you’re debugging,
because behavior pops up suddenly
in places you don’t expect.

I’m not saying that you shouldn’t
use events. They let you carry out be-
havior without changing a class,
which makes them useful when
working with library classes you
can’t modify. They are also valuable
because they don’t create a depen-

dency from the class triggering the
event to the one that needs to react.
This lack of a dependency is valuable
when the two classes are in different
packages and you don’t want to add
a dependency. The class case of this is
when you want to modify a window
in a presentation when some domain
object changes. Events let you do this
while preserving the vital separation
of the presentation and domain.

Those forces both suggest events,
but in their absence, the lack of explic-
itness of events becomes more domi-
nant. So, I would be reluctant to use
events between two application classes
that can be aware of each other.

As you can see, explicitness is not
always the dominant force in design
decisions. In this example, packaging
and dependency forces are also im-
portant. People often underestimate
the value of explicitness. There are
times when I would add a dependency
to make code more explicit, but, as al-
ways with design, each situation has
its own trade-offs to consider.

Data-driven code and explicit
subclasses

My final example is on yet a bigger
scale. Consider a discounting scheme
for orders that uses different discount-
ing plans. The blue plan gives you a
fixed discount of 150 if you buy
goods from a particular group of sup-
pliers and the value of your order is
over a certain threshold. The red plan
gives you a 10 percent discount when
delivering to certain US states.

Figure 5 presents explicit code for
this. The order has a discounter with
specific subclasses for the blue and
red cases. The data-driven version in
Figure 6 uses a generic discounter
that is set up with data when the or-
der is created.

The generic discounter’s advantage
is that you can create new kinds of dis-
counters without making new classes
by writing code—if the new classes fit
in with the generic behavior. For the
sake of argument, let’s assume they
can. Is the generic case always the best
choice? No, again because of explicit-
ness. The explicit subclasses are easier
to read and they make it easier to

DESIGN

N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 13

Figure 4. An explicit reaction to
cancel (using C#). public class Reservation ...

public String Id;

public Person client;

public void Cancel(){

client.SendCancellationMessage(this);

}
Figure 5. Explicitly programmed
discount logic (using C#).

public class Order ...

public Decimal BaseAmount;

public String Supplier;

public String DeliveryState;

public Discounter Discounter;

public virtual Decimal Discount {

get {

return Discounter.Value(this);

}

}

}

abstract public class Discounter {

abstract public Decimal Value (Order order);

}

public class BlueDiscounter : Discounter {

public readonly IList DiscountedSuppliers = new ArrayList();

public Decimal Threshold = 500m;

public void AddDiscountedSupplier(String arg) {

DiscountedSuppliers.Add(arg);

}

public override Decimal Value (Order order) {

return (DiscountApplies(order)) ? 150 : 0;

}

private Boolean DiscountApplies(Order order) {

return DiscountedSuppliers.Contains(order.Supplier) &&

(order.BaseAmount > Threshold);

}

}

public class RedDiscounter : Discounter {

public readonly IList DiscountedStates = new ArrayList();

public void AddDiscountedState (String arg) {

DiscountedStates.Add(arg);

}

public override Decimal Value (Order order) {

return (DiscountedStates.Contains(order.DeliveryState)) ?

order.BaseAmount * 0.1m : 0;

}

}

// to set up a blue order

BlueDiscounter bluePlan = new BlueDiscounter();

bluePlan.AddDiscountedSupplier(“ieee”);

blue = new Order();

blue.Discounter = bluePlan;

blue.BaseAmount = 500;

blue.Supplier = “ieee”;

14 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

DESIGN

Figure 6. Data-programmed discount logic (using C#).

public class GenericOrder : Order ...

public Discounter Discounter;

public override Decimal Discount {

get {

return Discounter.Value(this);

}

}

public enum DiscountType {constant, proportional};

public class Discounter ...

public DiscountType Type;

public IList DiscountedValues;

public String PropertyNameForInclude;

public String PropertyNameForCompare;

public Decimal CompareThreshold;

public Decimal Amount;

public Decimal Value(GenericOrder order) {

if (ShouldApplyDiscount(order)) {

if (Type == DiscountType.constant)

return Amount;

if (Type == DiscountType.proportional)

return Amount * order.BaseAmount;

throw new Exception (“Unreachable Code reached”);

} else return 0;

}

private Boolean ShouldApplyDiscount(Order order) {

return PassesContainTest(order) &&

PassesCompareTest(order);

}

private Boolean PassesContainTest(Order order) {

return DiscountedValues.Contains

(GetPropertyValue(order, PropertyNameForInclude));

}

private Boolean PassesCompareTest(Order order){

if (PropertyNameForCompare == null) return true;

else {

Decimal compareValue =

(Decimal) GetPropertyValue(order, PropertyNameForCom-

pare);

return compareValue > CompareThreshold;

}

}

private Object GetPropertyValue (Order order, String propertyName) {

FieldInfo fi = typeof(Order).GetField(propertyName);

if (fi == null)

throw new Exception(“unable to find field for “ + property-

Name);

return fi.GetValue(order);

}

}

N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 15

DESIGN

understand the behavior. With the
generic case, you must look at the
generic code and setup code, and it’s
harder to see what’s happening—and
even harder for more complicated bits
of behavior. Of course, we can extend
the generic order without “program-
ming,” but I’d argue that configuring
that data is a form of programming.
Debugging and testing are often both
difficult and overlooked with data-dri-
ven behavior.

The generic case works when you
have dozens of discounters. In such
cases, the volume of code becomes a
problem, while greater volumes of
data are less problematic. Sometimes
a well-chosen data-driven abstrac-
tion can make the logic collapse into
a much smaller and easier-to-main-
tain piece of code.

Ease of deploying new code is also a
factor. If you can easily add new sub-
classes to an existing system, explicit
behavior works well. However, generic
behavior is a necessity if new code
means long and awkward compile and
link cycles.

There’s also the option of combin-
ing the two, using a data-driven
generic design for most of the cases
and explicit subclasses for a few hard
cases. I like this approach because it
keeps the generic design much sim-
pler, but the subclasses give you a lot
of flexibility when you need it.

E xplicitness is not an absolute in de-
sign, but clever designs often be-
come hard to use because they

aren’t explicit enough. In some cases,
the cost is worth it, but it’s always
something to consider. In the last few
years, I’ve tended to choose explicit de-
signs more often because my views of

what makes good design have evolved
(hopefully in the right direction).

Martin Fowler is the chief scientist for ThoughtWorks, an
Internet systems delivery and consulting company. Contact him
at fowler@acm.org.

//to set up a blue order

GenericDiscounter blueDiscounter = new GenericDiscounter();

String[] suppliers = {“ieee”};

blueDiscounter.DiscountedValues = suppliers;

blueDiscounter.PropertyNameForInclude = “Supplier”;

blueDiscounter.Amount = 150;

blueDiscounter.PropertyNameForCompare = “BaseAmount”;

blueDiscounter.CompareThreshold = 500m;

blueDiscounter.Type = DiscountType.constant;

blue = new Order();

blue.BaseAmount = 500;

blue.Discounter = blueDiscounter;

If you have significant academic or industrial experience in developing large
software systems and you are committed to improving the practice of software
engineering, we want to talk to you about a faculty appointment at Boston Uni-
versity in Computer Systems Engineering. Our graduate program teaches the
engineering skills necessary for the effective development of large-scale com-
puter systems in which software provides essential functionality. We teach stu-
dents to apply engineering principles to the design of a full range of computer
products from embedded systems, to data communication networks, to soft-
ware products. Three types of appointments are available in the Department of
Electrical and Computer Engineering (ECE) starting in September 2002:
• Research oriented tenure-track and tenured appointments.
• Non-tenure track positions, which require extensive experience in

practicing software engineering.
• Adjunct (part-time) positions for Boston-area experts who are interested in

teaching their specialty at the graduate level.
All positions require a commitment to excellence in teaching at the undergrad-
uate and graduate levels. For additional information on the College of Engi-
neering and ECE Department visit the College’s homepage at
http://www.bu.edu/eng/.

To learn more about opportunities for a non-tenure track OR adjunct posi-
tions, please e-mail: besaleh@bu.edu and a faculty member will call to discuss
our opportunities. For tenure-track OR tenured appointments, send your Cur-
riculum Vita to: Professor Bahaa E. A. Saleh, Chair, Department of Electrical and
Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, MA
02215.

Boston University

