
6 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

design
E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

Y
ou know you’re a geek when going to
the coffee shop gets you thinking about
interaction patterns between loosely
coupled systems. This happened to me
on a recent trip to Japan. One of the
more familiar sights in Tokyo is the nu-

merous Starbucks coffee shops, especially around
Shinjuku and Roppongi. While waiting for my
“Hotto Cocoa,” I started thinking about how a

coffee shop processes customer
orders. As a business, the coffee
shop is naturally interested in
maximizing order throughput,
because more fulfilled orders
mean more revenue.

Interestingly, the optimiza-
tion for throughput results in
a concurrent and asynchronous
processing model: when you
place your order, the cashier

marks a coffee cup with your order and places
it into a queue. This queue is literally a line of
coffee cups on top of the espresso machine.
The queue decouples the cashier and barista,
letting the cashier continue to take orders even
when the barista is backed up. It also allows
multiple baristas to start servicing the queue
if the store gets busy, without impacting the
cashier.

Asynchronous processing models can be
highly efficient but are not without challenges.
If the real world writes the best stories, then
maybe we can learn something from Starbucks
about designing successful asynchronous mes-
saging solutions.

Correlation
For example, the asynchronous processing

model means that drink orders aren’t necessarily
completed in the same sequence in which they
were placed. This can happen for two different
reasons. First, multiple baristas might be process-
ing orders using different equipment. Blended
drinks usually take longer to make than drip cof-
fee, so a drip coffee ordered last might be deliv-
ered first. Second, baristas can make multiple
drinks in one batch to optimize processing time.

As a result, Starbucks has a correlation prob-
lem. Drinks are delivered out of sequence and
must be matched up with the correct customer.
Starbucks solves the problem with the same
“pattern” we use in messaging architectures—
they use a correlation identifier.1 In the US, most
Starbucks use an explicit correlation identifier
by writing your name on the cup and calling it
out when the drink is ready. In other countries,
they often correlate by drink type. The correla-
tion issue became very apparent in Japan, where
I had difficulties understanding the baristas call-
ing out the drinks. My approach was to order
extra large “venti” drinks because they’re un-
common and therefore easily identifiable—that
is, “correlatable.”

Exception handling
Exception handling in asynchronous-messag-

ing scenarios is naturally difficult. For example,
if the receiver of a message is truly decoupled
from the sender, what’s the receiver to do when
something goes wrong? What does Starbucks do
if they’ve already placed your drink order into

Your Coffee Shop Doesn’t
Use Two-Phase Commit

Gregor Hohpe

M a r c h / A p r i l 2 0 0 5 I E E E S O F T W A R E 6 5

DESIGN

the queue and then it turns out you
can’t pay? They either pull your cup
from the queue or toss the drink if it has
already been made. Likewise, if they de-
liver a drink that’s incorrect or unsatis-
factory, they remake it. If the machine
breaks down and they can’t make your
drink, they refund your money. Each of
these scenarios describes a different but
common error-handling strategy for
loosely coupled systems (see Figure 1).

Write-off
This is the simplest strategy: do noth-

ing, or discard what you’ve done (see Fig-
ure 1a). This might seem like a poor
plan, but in the reality of business, it might
be acceptable. If the loss is small, building
an error-correction solution might be
more expensive. Furthermore, it might
slow down the flow of messages, which
reduces system throughput.

For example, I’ve worked for several
ISPs who used this approach for errors
in the billing and provisioning cycle. Oc-
casionally, they failed to bill a customer
with active service, but the revenue loss
was small enough that it didn’t signifi-
cantly hurt the business (and customers
rarely complained about getting a free
account!). Periodically, they’d run recon-
ciliation reports to detect and close such
accounts.

Retry
When one operation out of a group

of operations (or “transactions”) fails,
you have essentially two choices: undo
the ones that completed successfully or
retry the one that failed. Retry is a plau-
sible option if there’s a realistic chance
that the retry will succeed (see Figure
1b). For example, if an external system is
temporarily unavailable or an item is out
of stock, a retry might be worthwhile.
However, if a business rule was violated,
it’s unlikely a retry will succeed.

A special case is “retry all,” where we
simply ask all receivers to retry the oper-
ation. This requires all receivers to be
idempotent receivers1—that is, the suc-
cessful receivers must have built-in intel-
ligence to ignore duplicate commands.
This approach requires a little more co-
operation from the receivers, but it sim-
plifies the error-handling strategy.

Compensating action
The obvious alternative to retrying

failed operations is to undo already
completed operations to return the sys-
tem to a consistent state (see Figure
1c). Such compensating actions work
best with monetary systems, where we
can credit money already debited. But
real life uses many other compensating
actions. For example, we might call
and ask a customer to ignore a letter
that has been sent or to return a pack-
age that was sent in error.

Transaction coordinator
The strategies discussed thus far dif-

fer from a traditional two-phase com-
mit that relies on separate prepare and
execute steps for each participant. In
the Starbucks example, a two-phase
commit would equate to having the

customer wait at the cashier’s counter
with money and the receipt until the
drink is ready. Then, the money, receipt,
and drink would change hands in one
swoop. Neither the cashier nor the cus-
tomer could leave until the transaction
was complete.

Using such a two-phase-commit ap-
proach would certainly kill a coffee
shop’s business because it would dra-
matically decrease the number of cus-
tomers the shop could serve in a certain
time interval. Although a two-phase
commit can make life a lot simpler, it
can also hurt the free flow of messages
(and therefore scalability) because it re-
quires the allocation of a stateful trans-
action resource across the flow of mul-
tiple, asynchronous actions. Starbucks
follows an optimistic approach to opti-
mize throughput in the “happy day”
scenario, even though this results in a
small loss when errors occur.

When amounts and stakes are larger,
a pessimistic two-phase-commit ap-
proach is more appropriate (see Figure
1d). For example, when you purchase a
home, an escrow company essentially
acts as a transaction coordinator, offer-
ing a two-phase-commit service. The es-
crow company ensures that all required
resources from all parties, such as funds,
documents, and permits, are available
before committing the transaction—that
is, the purchase of the property. Once the
transaction closes, all resources are con-
sistently committed across all parties.

Yet even this case employs some com-
pensation strategies. Because your bank
account doesn’t support a traditional
prepare and then commit or rollback
protocol, the escrow company takes
money from your account first and then
refunds it if the transaction has to be
rolled back. Essentially, the prepare step
translates into debit money, rollback
translates into credit money, and commit
translates into do nothing. This transla-
tion is legal because we assume we can
credit an account—this action won’t fail.
Debiting money first implements a pes-
simistic resource allocation strategy that
can be reliably reversed. So this scenario
exemplifies how to integrate a compen-
sating-action scheme into a coordinated
two-phase-commit transaction. How-

Resource
B

Resource
A

Action

Resource
B

Resource
A

(Retry)

Resource
B

Resource
A

(Undo)

Resource
B

Resource
A

Coordinator

Prepare

Feedback

Commit

Action

Action

Action

(a)

(b)

(c)

(d)

Figure 1. Error-handling strategies
for loosely coupled systems: (a)
write-off; (b) retry; (c) compensating
action; (d) transaction coordinator.

6 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

ever, even this two phase approach doesn’t
guarantee that all the ACID properties
often associated with transactions are
supported. For example, the “I,” which
stands for isolation, isn’t guaranteed. Al-
though the escrow “transaction” is in
progress, the money is actually taken out
of the buyer’s bank account, causing this
transaction to not be isolated from other
purchasing transactions.

Conversations
The coffee shop interaction is also a

good example of a simple but common
conversation pattern (see Figure 2). The
interaction between two parties (cus-
tomer and coffee shop) consists of a
short synchronous interaction (ordering
and paying) and a longer, asynchronous
interaction (making and receiving the
drink). This type of conversation pat-
tern is quite common in purchasing sce-

narios. For example, when you place an
order on Amazon.com, a short syn-
chronous interaction assigns a unique
order number first. All subsequent steps
(charging your credit card and packag-
ing and shipping the product) are per-
formed asynchronously: you’re notified
via (asynchronous) email as additional
processing steps complete. If anything
goes wrong, Amazon usually uses simi-
lar compensation strategies—refunding
your credit card or retrying the action
by resending the goods.

Figure 2 illustrates the sequence of
messages interchanged (the conversa-
tion) in a coffee shop and the internal
process that each party follows. For ex-
ample, a customer can pay only after
he or she knows how much the coffee
costs. Similarly, although the customer
is ready to sip the coffee at any time, he
or she must wait for the drink to arrive.

Asynchrony: A matter of
perspective

The Starbucks scenario also demon-
strates that being asynchronous often
applies only to part of the interaction.
For example, the baristas prefer an
asynchronous model because it in-
creases throughput—they can immedi-
ately move on to the next order without
having to wait for a customer to retrieve
his or her drink. The customer, on the
other hand, expects a synchronous in-
teraction; he or she came to the store to
buy a drink and will have to stay until
the drink is delivered. This type of syn-
chronization is fairly common and has
been documented as the Half-sync,
Half-async pattern.

2
The main ingredi-

ent to solving both parties’ requirements
is a message buffer that lets the asyn-
chronous participant (the barista) de-
liver messages (drinks) asynchronously
without having to wait for the synchro-
nous participant (the customer). In a
coffee shop, the pickup counter acts as
this message buffer.

T he real world is often asynchronous.
Our daily lives consist of many coor-
dinated but asynchronous interac-

tions (such as reading and replying to
email or buying coffee). This means that
an asynchronous messaging architecture
can often be a natural way to model
these types of interactions. It also means
that looking at daily life can help us
solve our messaging problems. For an-
other great example of a high through-
put system, I recommend spending rush
hour at Shinjuku Station—over one mil-
lion people pass through there every
weekday. And yes, a Starbucks is nearby.
Domo arigato gozaimasu!

References
1. G. Hohpe and B. Woolf, Enterprise Integra-

tion Patterns, Addison-Wesley, 2003.
2. D. Schmidt et al., Pattern-Oriented Software

Architecture, vol. 2, John Wiley, 2000.

Gregor Hohpe is an integration architect at Thought-
Works and maintains the Web site www.eaipatterns.com. Contact
him at ghohpe@thoughtworks.com.

Compute
price

Make drink

Make drink

Order
queue

Place
order

Order
(initiation)

PaymentPrice

Compute
change

Take
order

Dig up
money

Pickup
(correlation)

Output
buffer

Barista

Cashier

Coffee Shop

Change
(optional)

Put away
change

Customer

Sip coffee

Figure 2. A conversation pattern.

