
8 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

design
E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

I
f you’re at all like me, you’ve spent a lot of
time thinking about what makes “good de-
sign” good. Most software developers be-
come preoccupied with this question at
some point in their careers, usually after
witnessing the effects of bad design first

hand. At that point, we start to reflect. We go
through a stage where we feel we know what
good design is but can’t really define it. Then we
learn various design principles and rules of
thumb that make it easier to judge what consti-
tutes good design. But when these principles and
rules conflict, we have to make trade-offs and
decide what’s most important in each situation.

To help me out, a few years ago I created
my own blanket rule of thumb: Keep design as
clear as possible. I was pretty sure that, re-
gardless of the trade-offs, the most important
thing was clarity. If a system uses a straight-
forward coding style—the classes and methods
are well named and small enough to be clearly
understood, and the system isn’t littered with
snarls of obscure code—then you can do just
about anything. You can change the system
with impunity, write tests for it, make adjust-
ments, and add features, all with relative ease.

So “clear design is good design” seemed like
a reasonable rule of thumb because so much of
what makes code impossible to maintain comes
down to a lack of clarity. If you can understand
your system, you can change it effectively. If
you can’t, it’s much harder. Sounds simple and
straightforward, right? Well, it might be a little
too simple. Recently, I’ve discovered that I’m
periodically sacrificing clarity and subordinat-
ing it to another standard.

Changing clear code
Let’s take a look at an example. In Figure

1, we have some reasonably clear code for a
method on a C++ class in a trading applica-
tion. The adjustedShares method com-
putes the number of shares that should be sold
under certain circumstances. To do this, it
gets information from a static method named
getRateAdjustment on a class named
TradeUtils. TradeUtils is just a utility
class. All of its methods are static.

So, what would we do if we needed to
change the way getRateAdjustment calcu-
lates baseAdjustment? The answer seems
relatively straightforward—we’d go into the
code and change the calculation. But how
would we know if we got it right?

The most direct way to ensure that our
changes are correct is to build some tests
around the code we’re changing to sense how
it currently works. Then, once we’ve made our
changes, we can write more tests to see if the
changed code works as expected.

So, the first step is to create a ShareBias
instance in a test so we can call the adjust-
Shares method and to see what values we’re
currently producing. Figure 2 shows a test
written using the CppUnit testing framework
(http://cppunit.sourceforge.net).

This seems simple enough, but we discover
a problem when running the test. The static
method getRateAdjustment on the Trade-
Utils class throws an exception. It turns out
that it talks to a remote system that provides
real-time rate adjustments over a socket. It
also turns out that other methods on Share-

Before Clarity
Michael Feathers

N o v e m b e r / D e c e m b e r 2 0 0 4 I E E E S O F T W A R E 8 7

DESIGN

Bias use many other static methods on
the TradeUtils class, presenting sim-
ilar problems. How in the world can
we test this little piece of code without
bringing up that other system?

Refactoring to make the code
testable

This sounds like a job for refactoring.
Refactoring is the process of changing
code’s structure without changing its be-
havior to make it more maintainable (for
more information, see Martin Fowler’s
Refactoring: Improving the Design of
Existing Code, Addison-Wesley, 1999).
In this case, we’d like to refactor
ShareBias to make it more testable,
which would also make it more main-
tainable. The problem is, when we refac-
tor, we should have tests around the
code we’re changing to ensure we don’t
introduce errors.

To address this problem, we could
use a series of dependency-breaking
techniques to make the class testable.
Dependency-breaking techniques are
refactorings, but they’re very conserva-
tive—we can perform them safely with-
out running tests. (I discuss this further
in Working Effectively with Legacy
Code, Prentice Hall, 2004.)

So, how can we refactor this code to
make it testable? Here’s one technique.
We can find the getRateAdjustment
method on the TradeUtils class and
make it a nonstatic method (see Figure
3). Then we could subclass TradeUtils
and override the nonstatic method so it
returns values we supply when we’re test-
ing. If we change the ShareBias class’s
constructor to accept a TradeUtils in-
stance, we could use that instance in the
adjustedShares method (see Figure 3)
and eliminate dependencies on the re-
mote system. Doing this would also
make it possible to write tests for all
other ShareBias methods that use
TradeUtils.

The technique just used is a variation
of a technique called Introduce Instance
Delegator. Although it gets us past the
immediate problem—we can now write
tests for the adjustedShares

method—the result is a rather ugly
TradeUtils class (it has a bunch of sta-

tic methods and only one nonstatic
method). Furthermore, we’ll have to find
all the places in the code base where we
access getRateAdjustment statically
and declare a TradeUtils object so
that we can replace calls such as
TradeUtils::getRateAdjustment

(id, 3) with someUtilsObject.get
RateAdjustment(id, 3).

So this isn’t the cleanest solution.
TradeUtils is now a class in limbo—
sometimes we need to create an in-
stance of it and other times we can just
use its methods statically. However,
over time, we can make it more like a
normal class by making its static meth-
ods nonstatic. Should we feel bad that
our code is less than clear now? We
could, but we’re making progress. The
fact is, we had to do this or something
else equally ungainly to test the method.

The original code was clear but not
testable. To me, that just makes it
poorly designed code.

I like clean, clear code. I consider clar-
ity to be one of the most important
things that we can achieve in our de-

signs. But as I try to get tests in place in
ostensibly clear code bases, I’ve discov-
ered that I don’t mind strategically
dropping clarity if it’ll get me testability.
When code is testable, we get a different
kind of clarity. We can write tests that
make the code’s functionality very clear,
and we can use those tests to support us
as we move the code back to conven-
tional clarity.

Is there a good clear yet testable de-

Figure 1. Reasonably clear code for a C++ method in a trading application.

double ShareBias::adjustedShares(ClientAccount& account,

int sharesToSell,

double balanceRate) {

double baseAdjustment = 0;

double adjustedShares = 0;

if (balanceRate > m_orgBase) {

baseAdjustment = TradeUtils::getRateAdjustment(

account.getID(), sharesToSell);

} else {

baseAdjustment = m_state_min + m_bucket[POST_DIST]

+ m_bucket[PRE_STATE_DIST];

}

adjustedShares = (3 * sharesToSell)

– Math.sqrt(baseAdjustment * 2.0) * m_defaultBias;

…

return adjustedShares;

}

Figure 2. Creating a ShareBias instance in a test.

void ShareBiasTest::testAdjustedShares() {

ShareBias bias;

ClientAccount account(“Joe”, 1);

assertEquals(0.0, bias.adjustedShares(account, 10, 0.9));

}

8 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

sign for the ShareBias class? I think
so. When we rename TradeUtils and
start to make its static methods nonsta-
tic, we’ll get closer to it, and the tests
we write in the process will help us

make sure that we get there without
breaking the code. In much the same
way, we can take most designs and
make them easier to maintain if we de-
cide to make them testable first. Once

we do, we can make the code clearer as
we move forward.

Michael Feathers is a consultant at Object Mentor.
Contact him at mfeathers@objectmentor.com.

Figure 3. Code modifications to support testing of adjustedShares.

class TradeUtils
{

static double getForeignRate(int id, date transactionDate);
static double getMarginalRate(int id, date transactionDate);
static double setAccountAllowanceFactor(int id, double factor);
…

// this method was static
virtual double getRateAdjustment(int id, int sharesToSell);

};

class FakeTradeUtils : public TradeUtils
{
public:

double nextAdjustment;
…
virtual double getRateAdjustment(int id, int sharesToSell) {

return nextAdjustment;
}

};

double ShareBias::adjustedShares(ClientAccount& account,
int sharesToSell,
double balanceRate) {

double baseAdjustment = 0;
double adjustedShares = 0;

if (balanceRate > m_orgBase) {
baseAdjustment = m_tradeUtils.getRateAdjustment(

account.getID(), sharesToSell);
} else {

baseAdjustment = m_state_min + m_bucket[POST_DIST]
+ m_bucket[PRE_STATE_DIST];

}

adjustedShares = (3 * sharesToSell) – Math.sqrt(baseAdjustment * 2.0)
* m_defaultBias;

…
return adjustedShares;

}

// Test using TradeUtils

void ShareBiasTest::testAdjustedShares() {
FakeTradeUtils tradeUtils;
ShareBias bias (tradeUtils);
ClientAccount account(“Joe”, 1);

tradeUtils.nextAdjustment = 0.1;
assertEquals(0.7, bias.adjustedShares(account, 10, 0.9));

}

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

