
T
 who think the adoption of

the UML is one of the most important developments
in the last couple of years. While I agree that sorting

out silly conflicts over notation is a big step forward, we still
have a more fundamental set of questions: What exactly is the
UML for? Why do we use it, and if we don’t why should we? If
you are using, or thinking of using, the UML, you ought to
know the answers to these questions.

It’s important to recognize that creating a UML diagram
involves a cost, and a UML model is not something that fun-
damentally matters to a customer. Customers want software
that works, not pictures, however pretty or standard. Thus,
the value of modeling is entirely bound up with its effect on
the software you are producing. If the model improves the
quality or reduces the cost, then the model has value. But the
model has no value on its own. It reminds me of a character
in a (forgotten) novel: “He was like the 0 in 90, with his wife
he was something, without her he was nothing.”

The value that a model provides is fundamentally about
giving the user a greater understanding of something than the
software itself. This may be greater understanding of the soft-
ware or of the domain that the software supports. It can do
this either by a two-dimensional graphical presentation, or by
highlighting important information.

A complicating factor is that all humans don’t think alike.
Some people understand things better in a textual form; oth-
ers prefer pictures. People differ where they are on this scale,
and some prefer pictures for some subjects and text for others.
So beware of over-restrictive standards. Remember that indi-
vidual needs differ, and that you need to find what the most
effective blend is for the people you are working with.

I’ll start by looking at the simple transformation from text
to graphics, leaving all the details in. In this approach you take
everything you can say in text and put it in the model. This
takes a lot of work; doing this level of detail with model and
source code takes too much time to be worthwhile, unless
you have tools that automate the task. This is where many
CASE tools come in: either round trip where tools convert
from model to code and back again (e.g., Rational Rose); or
tripless, where the code is the storage mechanism for the
model (e.g., Together-J).

The cost of producing the model is lowered, although
there is still a cost. However, when you have a model that de-
tailed, you have to ask how much you’re gaining. I think you

can gain in structural relationships (such as data structures),
but with control flow you often lose clarity.

Another important function of models is highlighting. It’s
hard to understand a complex system by diving into the details
in all their gore. You can use a model to highlight just the im-
portant parts of the system, and you can highlight before you
create software or after you’ve built all the code. The point is
that you can understand the key structures that make the soft-
ware work first, and then you’re in a better position to investi-
gate all the details.

Notice that I say, “highlight the important details,” not “ig-
nore the details.” A high-level view that ignores all details is
usually worthless because it doesn’t tell you anything. Rather
than a high-level view, I prefer to think of this style as a skele-
tal model. It shows you the bones of the system, which can be
quite detailed.

To my mind, a skeletal model is better than a fully-fleshed
model, where there’s so much more information to wade
through. When I’m trying to understand a model, I have to
figure out where to start. Typically people do this by trying to
find the important stuff, but since they don’t know what’s im-
portant, it’s much easier to get the person who knows the
model to do the selection. Similarly, if I’m creating a model
before building the system, the key decisions are in those im-
portant details. Not all issues are equally important, and I have
limited brain power. I need to expend that power on the im-
portant details, so I use a skeletal model.

I’ve also found a skeletal model is easier to maintain than a
fully-fleshed one. Important details change less often. And the
skeletal model is more useful, so people are more inclined to
keep it up to date. If people want details, they can explore the
code once the skeleton has provided the overview. The nice
thing about the code is that it’s always in sync with itself.

The crux is that a model is either fully-fleshed or skeletal, it
can’t be both. You either include all details, or you decide to
leave something out. As soon as you leave something out, you
are going down the skeleton path, even though your skeleton
may look less anorexic than mine. Your decision will be based
on what you find most valuable in visualizing the system. Peo-
ple vary, so your choice will be different than other people’s,
but you do need to make an explicit choice.

This is a key problem with many CASE tools. The fashion
these days is for the CASE tools to keep an automated link to
the code. A tool, however, cannot tell important details from

Model For?
What’s a

Model For?

Martin Fowler } fowler@acm.org
Independent consultant in Boston, Massachusetts

M E T H O D S I N P R A C T I C E

DISTRIBUTED www.DistributedComputing.com Computing 33

continued on page 35

O D B M S

DISTRIBUTED www.DistributedComputing.com Computing 35

There are many database options for an XML data server.
For this clothing company example, I am going to discuss us-
ing an ODBMS, which can be a good choice because XML
data looks like a graph. (See Figure 1 for a fragment of the ob-
ject structure for a clothing catalog company.) Searching for
clothing information involves traversing this graph structure
from product to item to size and to color swatch. Keep in
mind that this object structure fragment has been simplified—
it has objects such as color swatch that will be shared by other
items in the catalog not shown in this figure.

If you have been reading my columns or visiting my Web
site, you have probably read (many times) that ODBMSs are
great when you have a business need for high performance on
complex data. One sign of complex data is a graph structure
coupled with access by traversal, such as this example. When
you are selling products on the Internet and your Web site
must respond quickly to people browsing or agent programs,
your site must respond quickly, or the people/agents will just
move on. This is a compelling business need.

Figure 2 shows a possible architecture that uses an ODBMS
as an XML data server. It shows the mappings from the XML
data sources discussed earlier as well as the tools for editing
XML data. It also shows a connection to a merchant system.
Note the caching in the middle tier that ODBMSs offer. This

is another performance enhancement for providing complex
data to web servers.

Several ODBMS vendors offer solutions similar to this. If
you are interested, I suggest you check out the Web sites for
Ardent Software <www.ardentsoftware.com>, Object De-
sign <www.objectdesign.com>, and POET Software
<www. poet.com>. These companies had XML data server
offerings at the time I was writing this column. By the time it
appears, there may be more companies with offerings. Come
to my Web site to find if there are more.

We live in a world of many technical options. The key to
finding good solutions often involves matching business needs
for performance to the options available. In this column, an
example of a good solution for a middle-tier database in an
XML data server was outlined. In this case, an ODBMS is able
to provide the high performance on complex data required. As
we move through the world of increasing database diversity,
an ODBMS is a serious option for an XML data server. Q

Editor’s Note: Doug Barry has just published XML Data Servers: An

Infrastructure for Effectively Using XML in Electronic Commerce, which
looks at architectural options for XML data servers and provides
analysis/features of each architecture (www.xml-data-servers.com).

Figure 1. Object Structure for a Clothing Catalog Company

side issues, so the result is always a fully-fleshed model. This
is made worse by the fact that tools typically base their
analysis on the data structure of the classes rather than the
interfaces. The whole point of working with objects is that
you see the interfaces, not the internal data structure, so the
typical reverse-engineered diagram shows you the very
things that are supposed to be hidden. CASE tool vendors
need to put more time into thinking about how to show the
user important things and how to hide things that should
stay under wraps. Of course, since everyone’s definition of
important is different, this means there’s a lot of tricky cus-
tomization to do.

So, the unavoidable dilemma: In order to see the wood
from the trees in design, you need a skeletal model. However,
as soon as you do this, you lose the ability to have an auto-
mated connection to the details.

I don’t think we’ll see a solution from CASE vendors any
time soon. If you want a model that really does communicate
effectively, you need to make it a skeletal model, and that
means you have to build it yourself. In the end the human
brain counts.

As a last note, I’d like to thank Derek Coleman for helping
me crystallize my thinking on this column with the assistance
of some good wine and a paper napkin—two of the world’s
most effective (and enjoyable) design tools. %

M E T H O D S I N P R A C T I C E

continued from page 33

