
E
 to the Design Techniques Annual Ball?
The hot crowd is the UML group: Class Diagrams,
Sequence Diagrams, Activity Diagrams, all wearing

sharp and expensive casual business outfits. ER Diagrams
go in suits, look a little on the gray side, but are still very
popular. (They claim they are just as good as the object
techniques, the object techniques are just better dressed.)

CRC cards turn up in sandals, patterns are always
trying to turn you into one of them, and formal methods
snub everyone else for the slightest crease or stain. In a
corner, ignored by all, wearing stained and color-clash-
ing overalls, are the testing methods. Nobody wants to
talk to them.

All the design methods get to ride in fancy CASE tools;
testing methods are lucky if anyone walks them home. But
I’ve noticed that the parties that end in tears are usually the
ones that the testing methods weren’t invited to!

Alright, I’m being whimsical, it’s late, my hotel room
feels boring, and I’ve got a column to write. But this col-
umn is quite serious. You can use design methods until
you are blue in the face, but how you do your testing will
probably have a bigger effect. Certainly for many of my
clients, getting them to use effective testing techniques
is more bang for the buck than teaching them UML.

Self-Testing Code
A key technique I use is self-testing code. The principles
behind this are that testing is not something to start after
you have finished coding, and that test code is as impor-
tant a deliverable as production code—and should be
given the same emphasis. (I should say that this self-test-
ing code is unit test code, written by the developers them-
selves. You should have separately written system test
code as well.)

I’m a great fan of incremental development. Every
time I try to add new features to software, I stop and ask
myself: “What is the smallest piece of new function I
can add?” I then focus on adding that feature alone, and
I do not move to a new feature until the feature is com-
plete—including the self-testing code for that feature.
Development then proceeds by small steps, with the

testing code and the production code proceeding
in tandem.

It’s not unusual to write the test code before the pro-
duction code. I often find this useful, because it helps
me to focus on exactly what this incremental step
involves. Essentially, I write the test, and then get the
code to pass the test.

Another advantage of writing the test first is that the
tests help you concentrate on the interface for the new fea-
ture rather than the implementation. You are asking your-
self “How will a client use this new feature?” Getting the
test to work then gives me closure on the feature. With the
test working, I know I did what I set out to do.

But there is a further step, essential to the self-testing
technique. Once your new feature test works, you add it to
your unit testing code base. There are various ways of
doing this. These days I keep a separate set of tester classes
in my software. As each feature gets added to the produc-
tion code, a new test gets added to the test code.

I’ve been working with this on a major financial
system development project. It has over 2000 unit tests,
and the unit test code is a quarter the bulk of the pro-
duction code. Having such a battery of unit tests is valu-
able, but only if you use it, and to use it you must be
able to run it easily.

An essential factor here is that the tests must give a
simple indication of whether they pass or fail. A test that
produces a number that you then have to check manually
against some piece of paper is a stupid test. You should be
able to run all 2000 tests and either see “Ok,” or “Here is a
list of failures.”

At the project I just mentioned, they use Kent Beck’s
Smalltalk testing framework. It has a test panel that goes
green if all is well, or red if there are any failures. That way
you can happily just hit the button to run the tests and
know immediately if everything is fine (Kent and Erich
Gamma have ported the framework to Java—you can get
the URL from my homepage, http://ourworld.compuserve.
com/homepages/martin_fowler).

These self-tests are now a golden asset for future
development. Since they are easy to run and interpret,
you can run them regularly, even if they take a while.
Every time you go off for a meeting or to lunch, run allMartin Fowler is an independent consultant based in Boston,

Massachusetts.

DISTRIBUTED 54 Computing June 1998

The Ugly Duckling
Testing Methods:

The Ugly Duckling

Martin Fowler
fowler@acm.org

M E T H O D S I N P R A C T I C E

M E T H O D S I N P R A C T I C E

DISTRIBUTED www.DistributedComputing.com Computing 55

the tests. Or set up a regular job that runs every test at
midnight and mails you the result.

If in the future you do something that breaks some
other part of the system, the tests will quickly tell you.
You’ll know it must be something you just did that
caused the failure, and that knowledge alone is usually
enough to cut out hours of bug chasing. In particular,
you should try to run the full suite of tests whenever
you integrate.

It amazes me when a programmer checks in code after
days of work and just assumes that it will work with whatev-
er anyone else has checked in. If you can, run all tests every
time anyone integrates any code. Furthermore, get people to
integrate frequently. With incremental development you can
easily integrate daily.

Such an approach—what Ron Jeffries calls continuous
integration and relentless testing—makes bugs show up early,
when they are easier to find and fix. This does wonders in
reducing integration time.

When I am developing, I usually will run tests every
time I compile. It’s clearly not practical to run half-an-hour’s
worth of tests on every compile, so when I’m doing some
development I’ll choose a subset, which will run in a few
seconds, that focuses on the code I’m currently working on.
Maybe I’ll do a ten-minute test suite during a coffee break.

These unit tests are a great enabler. I’m a great fan of
refactoring: making improvements to the internal structure
of the code without changing the external behavior.
Regular refactoring is essential to keep the design integrity
of a software system. Refactoring without solid unit tests
leads to long and discouraging bug chases.

Similarly the tests are essential for performance opti-
mization. Again, without the tests it is hard to tell that a
performance enhancement does not introduce a bug.

When I teach self-testing code to developers, a usual
first reaction is that “Well this sounds reasonable, but I’ve
got deadlines to make.” The crucial realization is that self-
testing code actually speeds up writing code. It does this
because it makes debugging much shorter.

Early on in my programming life I discovered that I
spent much more time and effort removing bugs than I did
writing code. If you run tests regularly, bugs tend to show
up earlier. If it’s not long since your last write of a test, you
know which bit of code contains the bug.

After writing self-testing code for a while, developers
realize that they are spending less time debugging and thus
developing faster. The tests enable them to refactor more
easily, thus keeping the system design simpler and allowing
them to develop faster.

Introducing Self-Testing Code
How do you introduce self-testing code into your orga-
nization? Find some people who are willing to give it a
try and have them, well, give it a try. If they can reach
the point where they see how self-testing code improves

their productivity, they will be the best endorsers of the
technique. You may find you need a mentor who prac-
tices the technique to pass on to the development staff.

Certainly if I were looking for a mentor, I would be very
reluctant to hire one who didn’t understand and emphasize
testing. Make sure enough testing code gets written. To do
this you might use a code coverage tool to see how much of
the production code is being exercised.

Failing that, keep an eye on the ratio of test code to
production code. Make sure that the tests are being run
regularly. If it is practical to enforce running all unit tests
before checking in code, do that. If not, make sure
there’s an automatic run of all unit tests daily when you
do your daily build. (You do do a daily build, don’t you?)

It’s another day now, I’m on an airplane bound for a
conference, and I’m not so tired any more. The introduc-
tion to this column looks a little cheesy. So I’ll refrain from
making analogies about smartening up testing techniques
with a flashy new outfit. I’ll just tell you now, if you don’t
have self-testing code, start now. It may be the most impor-
tant thing you do this year! ❊

