
PLop Submission

ttrac-
from
aning.

king is
 my

tween
events
ends
ics on
 events,
 pattern
 so that

any ob-
iven a

 if you

edule

egated
ler] to
te the

werful
 need to
of a
m-

ral ex-
Recurring Events
for Calendars

Martin Fowler
100031.3311@compuserve.com

I had a happy time when I lived in the South End of Boston. I had a nice apartment in an a
tive brownstone building. It’s not the poshest part of town, but it was lively and a short walk
most things I needed. I did have a few irritations, however, and one of these was street cle
Now I like to have clean streets, but I also had to park my car on the street (off-street par
incredibly expensive). If I forgot to move my car, I got a ticket, and I often forgot to move
car.

Street cleaning outside my old house occurs on the first and third Monday of the month be
April and October, except for state holidays. As such its a recurring event, and recurring
have been a recurring event in my modeling career. An electricity utility I worked with s
out their bills on a schedule based on recurring events, a hospital books its out-patient clin
a schedule based on recurring events, a payroll is run on a schedule based on recurring
indeed employees’ pay is based on rules that are often based on recurring events. This
language describes how we can deal with these recurring events in a computer system,
the computer can figure out when various events occur.

An overview of the language

We begin by looking at where the responsibility should lie for working them out. Schedule sug-
gests that we define a specific class to handle the understanding of recurring events, so
jects that needs to deal with them (whether a doctor or a street) can do say by being g
schedule. It can be tricky to see what this schedule object looks like, however, especially
tend to think of objects in terms of their properties. Schedule’s Interface allows you to think
about what you want from the schedule rather than how you set up a schedule.

With the interface in hand, we can now begin to think about schedule’s properties. A sch
needs to work out which events (there may be several) occur on which days. Schedule Element
does this by giving a schedule a schedule element for each event, with the ‘when’ part del
to a temporal expression. A temporal expression has an individual instance method [Fow
work out whether a day lies within the temporal expression or not. At this point we separa
(simple) event matching from the (tricky) time matching.

We could come up with some language for defining temporal expressions, or some po
class that can be used to handle the rather wide range of temporal expressions that we
deal with. However I’m not inclined to develop a complex general solution if I can think
simple solution that solves my problem. Such a simpler solution is to think of some simple te
poral expressions, and define subclasses of temporal expression for them. Day Every Month
handles such expressions as ‘second monday of the month’. Range Every Year deals with such
things as ‘between 12 April and 4 November’ each year. I can then combine these tempo
© Martin Fowler 1

Schedule PLop Submission

ing.

onth
ually I
e.)
 every
wing is

 event
s, but
pressions with Set Expression to develop more complex cases, such as my old street clean
Using set expressions in this way is a simple application of interpreter [Gamma et al].

Schedule

My friend Mark is a physician in a London hospital. On the first and third monday of the m
he has a gastro clinic. On the second wednesday of the month he has a liver clinic. (Act
don’t know what his real schedule is and I’m making this up, but I’m sure you’ll forgive m
His boss may have a liver clinic on the second and fourth Tuesdays of a month, and golf on
monday (hospital consultants seem to do a lot of research on golf courses, I guess the s
good for their technique).

One way of representing this might be to consider that Mark has a set of dates for each
(Figure 1). This supports our needs, since we can now easily tell the dates of Mark’s clinic
it comes with its own problems.

Name Problem Solution

Schedule
You need to model someone having
events which occur on certain recur-
ring days.

Create a schedule object for the doctor
which can say which days an event
occurs on

Scheduleís Interface
You find it hard to see what schedule
should look like.

Imagine a schedule object is already
created and consider how you would
use it. Determine the key operations in
its interface.

Schedule Element
You need to represent recurring days
without enumerating them

Schedule Element with event and tem-
poral expression. Temporal expres-
sion has an individual instance method
to determine if dates match.

Day Every Month
You need to represent statements of
the form 2nd Monday of the Month

Use a day every month temporal
expression with a day of the week and
a count

Range Every Year
You need to represent statements of
the form 14 March till 12 October

Use a range every year temporal
expression with a day and month at
the start and end

Set Expression
You need to represent combinations of
temporal expressions

Define set combinations for union,
intersection and difference

Table 1: Table of Patterns

Figure 1. OMT[Rumbaugh et al] object model for a person with an association for each event.
2 Recurring Events for Calendars

PLop Submission Schedule

ave to
r take
erson

event,
ation are
ictio-
eate a
, event
n get

y that
econd

nsi-
d load-
o you

vents
e them
The first problem is that when we have an association for each event that Mark has, we h
modify the model for each change we make. Should our doctors get a new kind of clinic, o
up gliding, we have to add an association, which implies changing the interface of the p
class.

Figure 2 deals with this problem by using a qualified association. It defines a new type,
and says that each person has a set of dates for each instance of event (qualified associ
talked about in more detail in [Fowler] as keyed mappings, they correspond to Smalltalk d
naries or C++ STL maps). Now whenever we get some new clinic, all we have to do is cr
new instance of event, which deals well with that problem. (For the purposes of this paper
is just a string representing some activity, like a clinic or golf game, but in practice it ca
rather more involved.)

Another problem is to ask how we would set up the dates? Do we actually want to impl
we have to assert the individual dates for the person. We would prefer to just say ‘every s
monday’. Bear with me on that one, I’ll come to it later.

Figure 2 is certainly heading in the right direction, but I’m not comfortable with the respo
bility on person. There are many questions you might want to ask regarding the dates, an
ing all that stuff onto person is awkward, because person usually has enough to do. Als
will find other objects that might have similar behavior, such as my street.

So I’m inclined towards Figure 3 which puts all the responsibility of tracking dates and e
on a separate type: schedule. Now if we want some type to have this behavior we just giv
a schedule.

Figure 2. Person with a qualified association to date

Figure 3. Using schedule as a separate object.
Recurring Events for Calendars 3

Schedule’s Interface PLop Submission

cts that
round.
 of its
 up on
ation

t I get

lows
at is a
ne. I

econd-
 what I

linic.
e end

 from
r

 items
em.

 sense

eated.
tes, and
ve many
lements,

. This
s each
Schedule’s Interface

What kind of questions are we going to ask the schedule? Schedule is one of those obje
can really trip up people like me who have come from a data modeling / database backg
This is because that data modeling training makes us want to look at schedule in terms
properties. Providing we are using taking a conceptual perspective, and not getting hung
what is stored and what is calculated; this is not too much of a problem, at least for inform
systems. I find that schedule is one of the exceptions, for whenever I have worked with i
frazzled.

Thinking of an object through its properties is a very natural way to think of something. It al
us both to query and change the object easily. When frazzling occurs, however, then th
sign to try another tack. At this point I look at how I might use a schedule once I have o
forget about its internal structure, I also forget about how I set one up. Both of those are s
ary to using a completed schedule, so I just assume its set up by magic and ask myself
want it to do.

I doubt if I would really want Mark’s schedule to tell me all the days he is due for a gastro c
I might want to know which days he was booked this month, but not from the epoch to th
of time. So one question would be Occurrences (Event, DateRange) which would return of set of
dates. Another would be to find out when his next gastro clinic is scheduled, this might be
today, or from another date: nextOccurrence (Event, Date). A third would be to determine whethe
an event would occur on a given date: isOccurring(Event, Date). Naturally you would examine
your use cases to come up with some more, but we don’t want the full list, merely the core
(Listing 1). As it is these are not minimal, in that two could be defined on top of one of th
Getting a few of them gives me a better feeling of how schedule will be used. Now I have a
of where to go next because I know what I want to aim at next.

Schedule Element

With some picture of an interface we can now begin to think about how a schedule is cr
The main point of a schedule is that it tracks a correspondence between events and da
does so in such a way that the dates can be specified by some expression. Since we ha
events, and each event has its own expression, this leads me to a schedule containing e
each of which links an event to an expression that determines the appropriate dates.

Using properties is not a good way to model expressions, so again I think of an interface
expression should have some way of telling whether a particular date is true or not. Thu
instance of this temporal expression will have an Individual Instance Method1 that takes a date

class Schedule {
public boolean isOccurring(String eventArg, Date aDate)
public Vector dates (String eventArg, DateRange during)
public Date nextOccurence (String eventArg, Date aDate)

};

Listing 1. Java[Arnold & Gosling] interface for schedule
4 Recurring Events for Calendars

PLop Submission Day Every Month

 out

o
ent for a
s needs

ion
chedule

parated
form

w the
ock of

e

and returns a boolean (Figure 4). I will look at implementing this a little later, again sorting
the interface is the first important thing.

Example: Mark has a gastro clinic on the first and third monday of the month,
and a liver clinic on the second wednesday. This would be represented by a
schedule with two schedule elements. One schedule element would have an
event of ‘gastro clinic’ and a temporal expression that would handle the first
and third monday of the month. The other schedule element would have an
event of ‘liver clinic’ and a temporal expression that would handle the second
wednesday of the month.

Here the dynamic behavior is getting interesting. The core behavior is that of responding tisOc-
curring.The schedule delegates the message to its elements. Each element checks the ev
match and asks the temporal expression if the date matches. The temporal expression thu
to support a boolean operation includes (Date). If the event matches and the temporal express
reports true then the element replies true to the schedule. If any element is true then the s
is true, otherwise it is false. (Figure 5, and Listing 2)

The patterns have brought us to a point where the problem of considering the event is se
from that of forming the temporal expression. All we need to do know is figure out how to
the temporal expression, and all is dandy.

Day Every Month

So far we have a temporal expression which can say true or false for any given day. No
question is ‘how do we create such thing?’ The conceptually simplest idea is to have a bl

1. An Individual Instance Method [Fowler] is an operation whose method is different for
each instance of the class. There are several ways of implementing it: one of which is th
strategy pattern [Gamma et al]

Figure 4. Schedule Element
Recurring Events for Calendars 5

Day Every Month PLop Submission

velop
e might
ome
e com-

h, and
rized as
spond
f, at
ything

 such
So our
code for each object, conceptually simple but rather awkward to implement. We could de
some interpreter that would be able to parse and process a range of expressions that w
want to deal with. This would be quite flexible, but also pretty hard. We could figure out s
way to parameterize the object so that all possible expressions could be formed by som
bination of properties. This may be possible, it certainly would be tricky.

Another approach is to look at some of kinds of expression that this system has to deal wit
see if we can support them with a few simple classes. The classes should be as paramete
possible, but each one should handle a particular kind of expression. Providing they all re
to includes, this will work. We may not be able to cover everything that we can conceive o
least not without creating a new class, but we may well be able to cover pretty much ever
with a few classes.

The first such animal is to cope with phrases like “first monday of the month”. In a phrase
as this we have two variables: the day of the week, and which one we want in the month.

Figure 5. Interaction diagram to show how a schedule finds out if an event occurs on a date.

class Schedule {
public boolean isOccurring(String eventArg, Date aDate) {

ScheduleElement eachSE;
Enumeration e = elements.elements();
while (e.hasMoreElements()) {

eachSE = (ScheduleElement)e.nextElement();
if (eachSE.isOccurring(eventArg, aDate))

return true;
}
return false;

}; …
class ScheduleElement {

public boolean isOccuring(String eventArg, Date aDate) {
if (event == eventArg)

return temporalExpression.includes(aDate);
else

return false;
};

Listing 2. Java method to determine if an event occurs on a date

a Schedule
a Schedule
Element

a Temporal
Expression

A schedule is asked to check an event
on a date.

It asks each schedule element to check
the event and date.

The schedule element sees if the event
is the same and gets the temporal
expression to test the date.

If any schedule element replies true
then so does the schedule, otherwise it
replies false

isOccurring

isOccurring

includes
6 Recurring Events for Calendars

PLop Submission Day Every Month

 I have
day in the month temporal expression has these two properties (Figure 6). Internally includes
uses these to match the date (Listing 3).

Example: Mark has a gastro clinic on the second monday of the month. This
would be represented using a day in month temporal expression with a day of
the week of monday and a count of 2. Using Listing 3 this would be DayIn-
MonthTE (1, 2).

Figure 6. Day in month temporal expression

abstract class TemporalExpression {
public abstract boolean includes (Date theDate);

}

class DayInMonthTE extends TemporalExpression{
private int count;
private int dayIndex;
public DayInMonthTE (int dayIndex, int count) {

this.dayIndex = dayIndex;
this.count = count;

};
public boolean includes (Date aDate) {

return dayMatches (aDate) && weekMatches(aDate);
};
private boolean dayMatches (Date aDate) {

return aDate.getDay() == dayIndex;
};
private boolean weekMatches (Date aDate) {

if (count > 0)
return weekFromStartMatches(aDate);

else
return weekFromEndMatches(aDate);

};
private boolean weekFromStartMatches (Date aDate) {

return this.weekInMonth(aDate.getDate()) == count;
};
private boolean weekFromEndMatches (Date aDate) {

int daysFromMonthEnd = daysLeftInMonth(aDate) + 1;
return weekInMonth(daysFromMonthEnd) == Math.abs(count);

};
private int weekInMonth (int dayNumber) {

return ((dayNumber - 1) / 7) + 1;
};

Listing 3. Selected Java code for a day in month temporal expression.

Java’s date class represents day of the week using an integer range 0–6 for sunday–saturday.
used the same convention.
Recurring Events for Calendars 7

Range Every Year PLop Submission

nment
n’t re-
 of tem-
(Figure
ed date
ll see

 range
Example: Mark also has a liver clinic on the last friday of the month. This
would be represented using a day in month temporal expression with a day of
the week of friday and a count of -1.

Range Every Year

Some events can occur in a particular range in a year. I used to work in a British gover
establishment where turned the heating on and off at certain days in the year (they did
spond to anything as logical as temperature). To handle this we can use another subtype
poral expression, this one can set up with start and end points, using a month and a day
7). We can create one of these expressions several ways, depending on whether we ne
precision or not (Listing 4). A common need is to indicate just a single month, as we sha
later. The includes method now just looks at the date and tests whether it fits within that
(Listing 5).

Figure 7. Range each year temporal expression.

public RangeEachYearTE (int startMonth, int endMonth,
 int startDay, int endDay) {

this.startMonth = startMonth;
this.endMonth = endMonth;
this.startDay = startDay;
this.endDay = endDay;

};
public RangeEachYearTE (int startMonth, int endMonth) {

this.startMonth = startMonth;
this.endMonth = endMonth;
this.startDay = 0;
this.endDay = 0;

};
public RangeEachYearTE (int month) {

this.startMonth = month;
this.endMonth = month;
this.startDay = 0;
this.endDay = 0;

};

Listing 4. Creating a range each year temporal expression

If no date is specified it is set to zero.
8 Recurring Events for Calendars

PLop Submission Set Expression

e deal
ure 8
. Each
y. If we
 set ex-
when-

ge

e

Example: The heating is turned off on the 14 April and turned on the 12th
October. This could be represented as a range each year temporal expression
with a start month of April, start date of 14, end month of October, and end
date of 12. Using RangeEachYearTE it would be set up with RangeEachYearTE
(3, 9, 14, 12)1

Set Expression

The temporal expressions above provide some ability to represent the kinds of problem w
with, but we can greatly enhance their abilities by combining them in set expressions (Fig
and Listing 6). Set expressions require three classes: union, intersection, and difference
set expression holds a number of components and processes them in the appropriate wa
make these three classes composites[Gamma et al], we can put set expressions within
pressions; which allows us to build quite complex expressions. This is a useful technique
ever you want to combine some kind of selection expression.2

Example: The US holiday of memorial day falls on the last monday in May.
This can be represented by an intersection temporal expression. Its elements
are a day in month with count -1 and day of week of monday, and a range ev-
ery year with start and end month of may.

public boolean includes (Date aDate) {
return monthsInclude (aDate) ||

 startMonthIncludes (aDate) ||
 endMonthIncludes (aDate)

};
private boolean monthsInclude (Date aDate) {

int month = aDate.getMonth();
return (month > startMonth && month < endMonth);

}
private boolean startMonthIncludes (Date aDate) {

if (aDate.getMonth() != startMonth) return false;
if (startDay == 0) return true;
return (aDate.getDate() >= startDay);

}
private boolean endMonthIncludes (Date aDate) {

if (aDate.getMonth() != endMonth) return false;
if (endDay == 0) return true;
return (aDate.getDate() <= endDay);

}

Listing 5. The includes method for RangeEachYearTE

1. Yes the months are correct. Java’s date class represents months with an integer of ran
0–11.
2.You can also think of these as boolean operations, but I find thinking of sets of dates mor
natural — and difference is easier than using and and not.
Recurring Events for Calendars 9

Set Expression PLop Submission
Figure 8. Set expressions

class UnionTE …
public boolean includes (Date aDate) {

TemporalExpression eachTE;
Enumeration e = elements.elements();
while (e.hasMoreElements()) {

eachTE = (TemporalExpression)e.nextElement();
if (eachTE.includes(aDate))

return true;
}
return false;

};
class IntersectionTE …

public boolean includes (Date aDate) {
TemporalExpression eachTE;
Enumeration e = elements.elements();
while (e.hasMoreElements()) {

eachTE = (TemporalExpression)e.nextElement();
if (!eachTE.includes(aDate))

return false;
}
return true;

};
class DifferenceTE …

public boolean includes (Date aDate) {
return included.includes(aDate) &&

!excluded.includes(aDate);
};

Listing 6. Includes methods for the set expressions
10 Recurring Events for Calendars

PLop Submission Set Expression
Example: Street cleaning occurs from April to October on the first and third
mondays of the month, excluding state holidays. The representation is rather
tricky to describe in words, so take a look at Figure 9, the code is in Listing 8.

IntersectionTE result = new IntersectionTE();
result.addElement(new DayInMonthTE(1,-1));
result.addElement(new RangeEachYearTE (4));
return result;

Listing 7. Code for creating a temporal expression for memorial day.

Figure 9. Instance diagram showing objects to represent a street cleaning schedule

public DifferenceTE streetCleaning() {
UnionTE mon13 = new UnionTE();
mon13.addElement(new DayInMonthTE(1,1));
mon13.addElement(new DayInMonthTE(1,3));
IntersectionTE nonWinterMons = new IntersectionTE();
nonWinterMons.addElement(mon13);
nonWinterMons.addElement(new RangeEachYearTE (3,9));
return new DifferenceTE(nonWinterMons, maHolidays());

}

Listing 8. Java code for the street cleaning schedule
Recurring Events for Calendars 11

Set Expression PLop Submission

t
 lan-
l works
good

some

t
next

fining
 every

ut this,

e

n

Using set expression in this way is a use of the Interpreter1 pattern. It is interesting to note tha
I didn’t realize this until Ralph Johnson pointed it out to me. In my mind interpreters are for
guages, and languages are complicated. This is simple, and yet the interpreter pattern stil
very well, so well that it is easy to use it without realizing it, which I guess is the sign of a
pattern!

Going Further
Time and the PLoP limits bring to a halt here, however I should not stop without indicating
further patterns that need to be developed.

❍ When holidays occur they may cancel out the recurring event (as occurs in stree
cleaning). But a substitute may occur, such as do it the following Monday, or the
Thursday.

❍ The patterns here concentrate on events, but they can also be used to handle de
days as working days, or further ways to classify days. This may be as simple as
Monday to Friday is a working day.

❍ Some some events should not occur on the same day. Can we do something abo
or just trust our ability to write good temporal expressions?

❍ How do we handle a schedule such as four weeks on two weeks off?

References
[Arnold & Gosling] Arnold, K. and Gosling, J. The Java Programming Language, Addison-Wesley,
Reading, MA, 1996.
[Fowler] Fowler, M. Analysis Patterns: reusable object models, Addison-Wesley, Reading MA, 1997.
[Gamma et al] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: elements of reusabl
object-oriented software, Addison-Wesley, Reading, MA, 1995.
[Rumbaugh et al] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. Object-Oriented
Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

1. An interpreter defines a representation for the grammar of a language together with a
interpreter that interprets sentences in that language [Gamma et al].
12 Recurring Events for Calendars

	Recurring Events for Calendars
	An overview of the language
	Schedule
	Schedule’s Interface
	Schedule Element
	Day Every Month
	Range Every Year
	Set Expression

