
102 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E

O
ne of the earliest indicators of design
quality was coupling. It appeared, to-
gether with cohesion, in the earliest
works in structured design, and it has
never gone away. I still always think of
it when considering a software design.

There are several ways to describe cou-
pling, but it boils down to this: If changing
one module in a program requires changing

another module, then coupling
exists. It might be that the two
modules do similar things at one
point, so the code in one module
is effectively a duplicate of the
code in the other. This is an ex-
ample of the primary and obvi-
ous sin of duplication. Duplica-
tion always implies coupling,
because changing one piece of
duplicate code implies changing
the other. It can also be hard to

spot, because there might not be an obvious
relationship between the two pieces of code.

Coupling also occurs when code in one
module uses code from another, perhaps by
calling a function or accessing some data. At
this point, it becomes clear that, unlike dupli-
cation, you can’t treat coupling as something
to always avoid. You can break a program
into modules, but these modules will need to

communicate in some way—otherwise, you’d
just have multiple programs. Coupling is de-
sirable, because if you ban coupling between
modules, you have to put everything in one
big module. Then, there would be lots of cou-
pling—just all hidden under the rug.

So coupling is something we need to con-
trol, but how? Do we worry about coupling
everywhere, or is it more important in some
places than others? Which factors make
coupling bad, and which are permissible?

Look at dependencies
I concern myself most with coupling at the

highest-level modules. If we divide a system
into a dozen (or fewer) large-scale pieces,
how are these pieces coupled? I focus on the
coarser-grained modules, because worrying
about coupling everywhere is overwhelming.
The biggest problems come from uncon-
trolled coupling at the upper levels. I don’t
worry about the number of modules coupled
together, but I look at the pattern of depen-
dency relationship between the modules. I
also find a diagram very helpful.

When I use the term dependency, I use it as
defined in the Unified Modeling Language
(UML). So, the UI module depends on the do-
main module if any code in the UI module ref-
erences any code in the domain model—by

design

Reducing Coupling
Martin Fowler

E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

Domain DatabaseUser
interface

User
interface

(b)(a)

Domain Mapper Database

Figure 1. (a) A simple
package diagram and
(b) a mapper package
that insulates the
domain and database
packages from each
other.

DESIGN

calling a function, using some data,
or using types defined in the domain
module. If someone changes the do-
main, there is a chance the UI model
will also need to change. A depen-
dency is unidirectional: The UI
module usually depends on the do-
main module, but not the other way
around. We would have a second
dependency if the domain module
also depended on the UI module.

UML dependencies are also non-
transitive. If the UI module depends
on the domain module, and the do-
main module depends on the data-
base module, we can’t assume that
the UI module depends on the data-
base module. If it does, we must de-
scribe this with an extra dependency
directly between UI and database
modules. This nontransitivity is im-
portant because it lets us show that
the domain model insulates the UI
from changes in the database. Thus,
if the database’s interface changes,
we don’t immediately have to worry
about a change in the UI. The UI
will only change if the change in the

database causes a big enough
change in the domain that the do-
main’s interface also changes.

Figure 1a shows how I’d diagram
this using UML notation. The UML
is designed for an OO system, but
the basic notion of modules and de-
pendencies applies to most styles of
software. The UML name for this
kind of high-level module is pack-
age, so I’ll use that term from now
on (so the UML police won’t arrest
me!). Because these are packages, I
call this kind of diagram a package
diagram (although strictly in UML,
it’s a class diagram).

What I’m describing here is a
layered architecture, which should
be familiar to anyone who works in
information systems. The layers in
an information system make good
fodder for describing things we
must consider when thinking about
dependencies.

A common piece of advice re-
garding dependency structures is to
avoid cycles. Cycles are problem-
atic, because they indicate that you
can get in a situation in which every
change breeds other changes that
come back to the original package.
Such systems are harder to under-
stand because you have to go
around the cycle many times. I
don’t view the need to avoid cycles

User
interface

Domain Mapper
interface

Mapper
implementation

Database

Figure 2. Introducing an
interface implementation split.

User
interface

Database

Store

Store
implementation

Domain

Mapper

Figure 3. Defining an interface
in one package that’s
implemented by another.

�

ICSE 2002

May 19-25, 2002�
Buenos Aires�

Argentina�
�

Conference Website�
�

http://www.icse-
conferences.org/2002/�

�
Call For Participation�

�
http://www.icse-

conferences.org/2002/
cfp.pdf�

DESIGN

between packages as a strict rule—I’ll
tolerate them if they’re localized. A
cycle between two packages in the
same layer of an application is less of
a problem.

A mapper package
In Figure 1a, all the dependencies

run in a single direction. This is a
sign—but not requirement—of a well-
controlled set of dependencies. Figure
1b shows another common feature of
information systems, when a mapper
package separates the domain from
the database. (A mapper is a package
that provides insulation in both direc-
tions.) The mapper package provides
insulation in both directions, which
lets the domain and database change
independently of each other. As a re-
sult, you often find this style in more
complex OO models.

Of course, if you think of what
happens when you load and save
data, you realize that this picture isn’t
quite right. If a module in the domain
needs some data from the database,
how does it ask for it? It can’t ask the
mapper, because if it could, it would
introduce a dependency from the do-
main to the mapper, which would be
a cycle. To get around this problem, I
need a different kind of dependency.

So far, I’ve talked about dependen-
cies in terms of code using other parts
of code. But there’s another kind—
the relationship between an interface
and its implementation. An imple-
mentation depends on its interface
but not vice versa. In particular, any
caller of an interface depends only on
the interface, even if a separate mod-
ule implements it.

Figure 2 illustrates this idea. The do-
main depends on the interface but not
the implementation. The domain won’t
work without some mapper implemen-
tation, but only changes in the interface
would cause the domain to change.

In this situation, there are separate
packages, but this isn’t necessary.
Figure 3 shows a store package con-
tained within the domain, imple-
mented by a store implementation
contained within the mapper. In this
case, the domain defines the interface
for the mapper. It’s essentially saying

that the domain package will work
with any mapper that chooses to im-
plement the store interface.

Defining an interface in a module
that a separate module intends to im-
plement is a fundamental way to
break dependencies and reduce cou-
pling. This approach appears in many
forms, the most primitive of which is
the call back. In this form, the caller
is asked to supply a reference to a
function with a certain signature,
which is called later. A common ex-
ample in the Java world is a listener.
Because listeners are classes, they are
more explicit, which clarifies things.

Another example is a module defin-
ing an event that it passes out, to
which others can react. You can think
of an event as defining an interface to
which the listening module conforms.
The caller of the call back function, the
definer of the listener interface, and
the producer of the event know noth-
ing about the module that actually is
called, so there’s no dependency.

I ’m left feeling a lack of closure, be-
cause much of what I’ve said in-
volves weasel words such as “well-

controlled dependencies.” It’s difficult
to offer hard pieces of guidance when
trying to define a well-controlled set
of dependencies. Certainly, it’s about
reducing the amount of dependencies,
but that’s not the whole issue. The di-
rection of the dependencies and the
way they flow, such as to avoid big cy-
cles, is also important. In addition, I
treat all dependencies the same, with-
out considering the interface’s width.
It seems that worrying too much
about what you depend on is less im-
portant than the fact that there is a de-
pendency there.

The basic rule that I follow is to
visualize my high-level dependencies
and then rationalize them, separating
the interface and implementation to
break dependencies I don’t want.
Like so many design heuristics, this
seems awfully incomplete. Yet, I have
found it useful—and in the end, that
is what counts.

Martin Fowler is the chief scientist for ThoughtWorks, an
Internet systems delivery and consulting company. Contact him
at fowler@acm.org; http://martinfowler.com.

Writers
For detailed information on submitting
articles, write for our Editorial Guidelines
(software@ computer.org), or access
computer.org/software/author.htm.

Letters to the Editor
Send letters to

Letters Editor
IEEE Software
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
software@computer.org

Please provide an email address or day-
time phone number with your letter.

On the Web
Access computer.org/software for infor-
mation about IEEE Software.

Subscription Change of Address
Send change-of-address requests for mag-
azine subscriptions to address.change@
ieee.org. Be sure to specify IEEE
Software.

Membership Change of Address
Send change-of-address requests for the
membership directory to help@
computer.org.

Missing or Damaged Copies
If you are missing an issue or you
received a damaged copy, contact
help@computer.org.

Reprints of Articles
For price information or to order
reprints, send email to software@
computer.org or fax +1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article,
contact William Hagen, IEEE Copyrights
and Trademarks Manager, at whagen@
ieee.org.

How to
Reach Us
How to

Reach Us

