
2 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

design
E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

T
he rising popularity of refactoring, tools
such as JUnit, and agile methodologies
such as Extreme Programming (XP) has
brought a new style of design into view.
Continuous design is the process of us-
ing refactoring to continuously improve

a program’s design. Initially a skeptic, I’ve been
experimenting with continuous design for four
years, and it’s changed the way I program.

The role of continuous design
Continuous design is also known as evolu-

tionary or emergent design. I prefer the term
continuous design because it emphasizes the
core of the process: continuously taking advan-

tage of opportunities to improve
your design. When you discover a
design flaw, you fix it. When a new
feature doesn’t fit, you update the
design. (For an introduction, see
Martin Fowler’s “Is Design Dead?”
at www.martinfowler.com.)

Continuous design can coexist
with up-front design, but the XP
approach advocates the former in-
stead of the latter. When I started
experimenting with XP in 2000, I

was very skeptical of the idea. I’d been in-
volved in projects that had painted themselves
into a corner with bad design, and I was con-
vinced that up-front design was necessary to
avoid that problem. When I tried XP, I hedged
my bets: I designed a layered architecture and
persistence model up-front.

The persistence model was a disaster: it re-
quired a huge amount of code to do simple
things. Continuous design, however, was a roar-
ing success. The application, developed over 16
months by six people, had the best design I’d
seen. Bit by bit, continuous design fixed the per-
sistence model too, eventually giving us an ele-
gant solution that was simple and flexible.

My initial success with continuous design
inspired me to continue experimenting. My
up-front designs became simpler and simpler ...
then disappeared entirely. Today, when I start
a project, I actively avoid deciding on a design.
(That’s harder than it sounds!) I implement the
first feature, see where it takes me, implement
the second one, and refactor. As someone who
used to strongly advocate up-front design, I’m
surprised by how successful this has been. My
designs are actually simpler and easier to ex-
tend than they were with up-front design.

It’s easy to take a statement like “I actively
avoid deciding on a design” to mean that I don’t
design at all. That’s not what I mean. Continu-
ous design involves intensive, constant review
of the design—after code has been written and
there’s a design to review. The difference is that
there’s no speculative design. You optimize the
design for the features you’ve already coded.

Hard problems
How far can you take continuous design

before it breaks down? Some decisions are dif-
ficult to change. Even enthusiasts of continu-
ous design will cite “hard problems” such as
security, transactions, and internationalization
that require up-front design.

Or do they? The line isn’t as clear as people
think. I’ve solved each of these problems using
continuous design. The better the application
met continuous design goals (see the accompa-
nying sidebar), the easier the change was.

Security
The first time I encountered a pervasive

retrofit was in adding transaction security to
an existing system. By transaction security, I
mean that every client action in this client-
server system was separately verified to see if
the client had permission to do it. This level of
security was a critical requirement, but a for-

Continuous Design
Jim Shore

J a n u a r y / F e b r u a r y 2 0 0 4 I E E E S O F T W A R E 2 1

DESIGN

mal requirements process had failed to
unearth it. (This was despite having
key stakeholders review a prototype,
attend feature prioritization meetings,
and sign off on a 76-page requirements
document, complete with screen shots.)
After the first version was released, my
team was brought back to add the
missing security.

This wasn’t an XP project: we had
undergone an up-front design phase.
We hadn’t anticipated transaction secu-
rity, though, and the design didn’t in-
clude anything to handle it. Security
still turned out to be easy to add, al-
though it was tedious. We added secu-
rity status objects that we passed
around and added security checking to
every server-side entry point. There
were quite a few, and updating the
code took three programmers about
four days: nontrivial, but not as signif-
icant as a pervasive change such as this
would lead you to expect.

Transactions
A year or so later, I retrofitted busi-

ness transactions into a Web-based ap-
plication I was leading. Business trans-
actions, in this case, meant the ability
for operations on the business layer to
be grouped into atomic transactions, to
be committed or rolled back as a unit.

This project had been developed
with XP and had very good code. This
retrofit, which was more significant
than the security retrofit, took much
less time because the code was better. It
took one pair about a day, maybe two.
We took an existing database connec-
tion manager object, renamed it
Transaction, and added atomicity
features. Updating centralized database
and exception-handling logic rounded
out the change.

A notable aspect of this change was
the centralized database handler. Most
applications have database connection
management sprinkled throughout the
code. Even when there’s a dedicated per-
sistence layer, there’s often repeated con-
nection-open, connection-close, and ex-
ception logic. In the beginning, we had
duplicated connection logic, too. That
duplication was a target for continuous

design, and we refactored it into a com-
mon method on the Connection ob-
ject. Business objects would pass the
Connection object to the persistence
layer, which would give it a block of
code to execute.

This design, made to eliminate du-
plication, is what made creating
Transaction so easy. We changed
Connection to store the code blocks
and then created a commit() method
that executed them.

As you can see, our design was sim-
ple but not simplistic. Using code
blocks is a sophisticated technique in
Java, the language we used. We stay up
to date with the latest design patterns
and techniques—and we do our best to
avoid needing them. This time, we did
need them.

Internationalization
About six months later, we retrofit-

ted the same application with interna-
tionalized input and output. The code
had been developed with continuous de-
sign for nearly a year and was simply
outstanding. After researching interna-
tionalization, it took one pair about
four hours to code it. The code had a
centralized user input processing
method, which required a five-line
change. The centralized output handler
required a 10-line change.

It might seem like we’d planned up-
front for these changes, but we didn’t.
Early in development, we had the same
two lines of user input handling dupli-

cated in three or four places. Improve-
ments to our unit tests required it to be
centralized, so we refactored. Months
later, when we had dozens of pages, we
came back and reused that method to
support international input.

Output was a similar story. We orig-
inally used an HTML templating li-
brary called WebMacro (www.web-
macro.org) as a framework that our
classes extended. This framework-
based approach forced design decisions
that caused a lot of duplication. We
didn’t like this, so we moved to an ap-
proach that isolated WebMacro in a
wrapper class. This required us to
work harder to understand Web-
Macro, but it made our design much
cleaner.

The end result of this change was a
single class that passed an HTML tem-
plate to WebMacro and returned the
resulting stream. Later, when we inter-
nationalized, we were able to easily
modify that class to choose between
several localized templates.

Internationalization, again
If we’d kept WebMacro’s frame-

work-based approach, international-
ization would have been a lot more dif-
ficult. In fact, it probably would have
been like our recent internationaliza-
tion of a C# ASP.NET application.
ASP.NET is a framework for .NET
Web applications. Its use of multiple
base classes and data-driven compo-
nents makes it difficult to factor out

Design Goals in Continuous Design

Continuous design makes change easy by focusing on these design goals:

■ DRY (Don’t Repeat Yourself): There’s little duplication.
■ Explicit: Code clearly states its purpose, usually without needing comments.
■ Simple: Specific approaches are preferred over generic ones. Design pat-

terns support features, not extensibility.
■ Cohesive: Related code and concepts are grouped together.
■ Decoupled: Unrelated code and concepts can be changed independently.
■ Isolated: Third-party code is isolated behind a single interface.
■ Present-day: The design doesn’t try to predict future features.
■ No hooks: Interfaces, factory methods, events, and other extensibility “hooks”

are left out unless they meet a current need.

DESIGN

common functionality. Combined with
our inexperience with ASP.NET, this
led to a lot of duplication in the pre-
sentation layer.

We only internationalized output,
not input, but it still took one pair
about a week and a half. The culprit
was duplication. Rather than change
one method that handled all input and
output, we had to find all places that
output was generated and change that.
As with the security retrofit, this was
tedious, but not particularly hard.

Why does it work?
On all these projects, the difficulty

of making changes directly related to
specific design qualities. The most ob-
vious is duplication: when a change we
wanted was localized in a single class,
it was trivial. When we had to modify
similar code over and over, the change
was tedious and took a lot longer.

Other design qualities also affected
our ability to make changes. Simplicity
was important. With simpler designs,

we were less likely to encounter exist-
ing code. When adding features, we
were better off when there was no pre-
existing design to handle that feature.
Adding code that doesn’t exist is easy;
fixing someone’s preconceptions about
a feature first is more costly. The side-
bar lists a number of other design qual-
ities that have made our projects easier
to maintain and change.

Before you try
My experiments with continuous de-

sign have been very successful. I recom-
mend that you try it on your projects.
Before you begin, though, look
at your current process. Software
processes oriented around up-front de-
sign might not be friendly to continuous
design. At a minimum, you’ll need auto-
mated tests, a team-based approach to
changes (such as collective code owner-
ship), and commitment to continuously
evaluating and improving your design in
the face of schedule pressure.

You might wish to experiment with

continuous design by mixing it with
up-front design. If you do, be aware
that continuous design requires specific
design goals (see the sidebar). In partic-
ular, up-front designs often include
“extensibility hooks” for future design
changes. This approach makes contin-
uous design harder and should be
avoided.

O n my projects, continuous design’s
focus on simplicity and continuous
improvement has made the code

better and more maintainable over
time, rather than less. After experi-
menting with continuous design for so
long, I’m convinced that it’s harder to
paint yourself into a corner than it is
with up-front design. Try it for your-
self, and let me know how it worked
for you.

Jim Shore is the founder of Titanium I.T., a Portland, Ore-
gon, consultancy specializing in Extreme Programming. He’d like
to hear about your experiences with continuous design. Contact
him at jshore@titanium-it.com.

installation. But any task that a developer
has to perform more than three times is a
good candidate for automation.

Implementing automation can be as
simple as writing a shell script or batch
file, or a macro in your integrated de-
velopment environment. Or, you might
add additional rules or targets to an ex-
isting build script (such as Ant or Make
would use). It might require an entire
program itself, written in Ruby or
Java. However it’s implemented, make
sure that the automation code is kept
in version control and is advertised and
available for the entire team’s use.

Automation gives the team consis-
tency, reliability, and repeatability
across different developers and envi-
ronments. New developers can get on
board and be productive much faster if
all they have to do is push a button or
type a command, even if they’re build-

ing on a different platform than they’re
accustomed to.

Products to coordinate compilation
and building include old standbys such
as Ant (ant.apache.org) or Make (www.
gnu.org/software/make). Systems such
as AntHill (www.cs.unibo.it/projects/
anthill/index.html), Cruise Control
(http://cruisecontrol.sourceforge.net),
or Dartboard (http://public.kitware.
com/Dart) perform continuous build
and integration.

W ith these three legs in place, you’ll
have a firm base from which to
build great code.

Andy Hunt and Dave Thomas are partners
in The Pragmatic Programmers and authors of the new The
Pragmatic Starter Kit book series. Contact them via www.
PragmaticProgrammer.com.

Continued from p. 19

SOFTWARE CONSTRUCTION

Senior Technical Advisor for
Safety-Critical Electronic Systems

The FRA promotes and enforces safety
throughout the U. S. rail system. This posi-
tion provides technical leadership/advice for
the development of effective standards for
the safety and security of railroad electronic
systems. Requirements:

•Minimum of three years of experience
providing extensive knowledge of safety-
critical systems in areas such as railroads,
avionics, or space flight systems. Must
include experience pertaining to the design,
verification, and validation of safety-critical
systems, including knowledge of safety doc-
umentation, and security considerations.

•Ph.D. or M.S. in electronic/ computer
engineering, computer science, or compara-
ble field.

•Ability to communicate highly technical
information in writing and at meetings to
policy-makers with general backgrounds.

•Professional stature at the international
level in the field of safety-critical systems.

Position is in Washington, DC. U. S. citi-
zenship is required. Applications accepted
until February 9, 2004. Salary range is
$115,184 - $142,600. Visit http://www.fra.
dot.gov/Jobs.asp to view announcement
FRA-03-62VC.

Contact: Email: valerie.czawlytko@fra.dot.
gov, or call (202) 493-6112 or TDD (202)
493-6487/8.

FRA is an equal opportunity employer.

Federal Railroad
AdministrationU.S. Department

Of Transportation

