
0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 8 3

design
E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

M
any writers espouse the idea that
commercial software development
will soon consist of tribes of mon-
keys assembling commercially
available components, resulting in
faster development, significantly

reduced costs, and more reliable software. Al-
though we all dream that complex applications
development will eventually become faster,
cheaper, and better, realizing this dream with

components as currently conceived
has some fundamental flaws.

Components
As is often the case with trends

in the IT industry, the term compo-
nent has too many meanings. For
the purposes of this discussion, a
component

■ Has a simple, well-defined in-
terface

■ Is an object, meaning that the data and
methods are combined as a unit

■ Exhibits a degree of specialization of func-
tionality (often obtained through configu-
ration), with the appropriate range of life-
cycle methods to support the desired
functionality

■ Is designed with the expectation of reuse,
although the reuse context is unpredictable

Additionally, a system built with components
achieves complex functionality through the in-
teraction of various components.

Sounds ideal. According to this, each simple
component should be easy to specify, describe,
create, and test. Encapsulation should ensure

that components don’t interact in ways other
than through the interfaces or assembly frame-
work. Also, tests should be able to demon-
strate that the component respects its inter-
face, and no part of a system should be terribly
complex. Additionally, suitably designed com-
ponents should be more amenable to reuse
than monolithic systems.

The complex development effort required
for building component systems involves both
the creation of these components and their ag-
gregation into systems. In this view, the hard
work of software development moves from
building complete systems to designing and
creating these individual components, but even
this is easier given the boundaries on compo-
nents. The difficulty in software development’s
assembly phase involves identifying the appro-
priate components to use rather than creating
complex software. Some even envision global
repositories of components that existing sys-
tems monitor to find new or improved compo-
nents that perform desired functions. You
could then incorporate these new components
dynamically into an existing system.

Problems
However, problems exist, even without

considering the impact of systems dynamically
changing their component configuration and
use. Assembling components requires

■ Initially identifying the appropriate compo-
nents to implement the desired functionality

■ Determining and resolving gaps between
the desired functionality and the compo-
nents’ functionality

■ Specifying the component interactions

Components and
the World of Chaos
Rebecca Parsons

8 4 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

DESIGN

This requires a language that can suffi-
ciently describe the components’ seman-
tics so that the component assembler can
identify the desired components and see
how to connect them to achieve the de-
sired systems functionality. The assembler
must also understand how the compo-
nent assembly framework interacts with
the components. Neither these activities
nor the tools that support them, nor the
skills required to use them, are trivial.

Another problem with components
concerns their nature. One of the compo-
nent model’s primary strengths is that it
separates large systems into simpler com-
ponents interacting through simple inter-
faces. Other types of systems share this
strength. Work in the nonlinear systems
field has shown that the characteristics of
simple interfaces and the interaction of
simple entities through those interfaces
can give rise to emergent behavior.

Emergent computation
Emergent behavior, or emergent com-

putation, describes the appearance of
global computation or problem solving
from a system of distributed, discrete
computational systems. It is a computa-
tional ability that is not specifically pro-
grammed but rather emerges at a high
level when simpler components interact.
Researchers in this field are often star-
tled at the level of complexity that arises
from very simple computational struc-
tures. In systems with emergent charac-
teristics, the system’s global behavior dif-
fers from what designers anticipated.
These failed expectations are often in the
behavior’s specifics (the particular solu-
tions generated, for example); however,
these surprises can also deviate from ex-
pectations in more substantial ways.

It is easy to dismiss this notion as
something akin to the latest science fic-
tion thriller. Clearly, the components
used in software systems may not in-
teract in arbitrary ways. They can’t alter
their internal behavior and act au-
tonomously, and systems using com-
ponents are not designed to learn new
behaviors. The components still exist
in the particular framework originally
specified, so these systems should still
behave tractably.

We don’t need direct parallels to
emergent computation to see that con-
structing component systems is diffi-
cult. Despite significant investment in
tools and formalisms, delivered sys-
tems still contain significant defects,
even when measured against expected
behavior. Defining expected behavior
at the component level is not sufficient
to ensure correct behavior at the global
level, even when systems are con-
structed using components. Specifying
the component solution’s expected be-
havior requires specifying the results of
the components’ interactions with each
other. The component framework com-
municates with the components and
external environment.

Emergent computation in similar set-
tings should be enough to convince us
that describing the expected behavior of
such a complex of interacting compo-
nents is challenging at best. The most
rigorous component-level testing will
not tell us enough at the system level to
provide any assurances that we’ve
achieved the desired result. So, we must
resolve the issue of understanding the
global behavior. We must also face how
the computational power inherent in
components’ interacting systems affects
our ability to construct systems.

Constructing applications
Application development in the

component world involves three cate-

gories of development: designing and
developing component implementation
and constructing applications. We fo-
cus on the latter—constructing applica-
tion components and applications us-
ing a component framework and a
suite of existing components. Design-
ing a good component involves consid-
ering several factors, including appro-
priate encapsulation, clean interfaces,
appropriate granularity of functional-
ity, appropriate balance of specificity
and reusability, and completeness of
functional coverage. The developers re-
sponsible for creating the component
must understand the component frame-
work as well as the required component
behavior. The test design of the individ-
ual components is the most straightfor-
ward of these activities. If the compo-
nent is designed properly, the interfaces
should be simple and completely speci-
fied and the behavior should be prop-
erly encapsulated. (I’ve already de-
scribed the difficulty of constructing
and testing applications created using
components.)

Although components have poten-
tially altered the desired balance of
skills for developers, they have neither
radically simplified the task nor radi-
cally altered the basic skills and train-
ing needed. The skills for component
designers and developers parallel
those needed for large-scale object-
oriented design and development.
Good objects and components share
many design characteristics, such as
clean interfaces, functional cohesion,
adaptability, and completeness. Simi-
larly, developing these systems re-
quires skills in performance, readabil-
ity, and extensibility.

Designing and developing good
components requires even more insight
and vision into the application do-
main’s needs. It might seem that global
systems understanding becomes less
necessary in the component world.
However, the issues with emergent be-
havior demonstrate the need for both a
global understanding of the component
interactions and a local understanding
of individual components’ behavior.
This level of understanding is more

The most rigorous
component-level

testing will not tell us
enough at the system
level to provide any

assurances that
we’ve achieved

the desired result.

M a y / J u n e 2 0 0 3 I E E E S O F T W A R E 8 5

DESIGN

common in developers who understand
the behavior of heterogeneous distrib-
uted and parallel systems. We are not
looking at a significant reduction in the
skills necessary to develop systems in
this model. In the world of compo-
nents, components are not easy to cre-
ate properly, and applications are not
easy to create, even when using well-
designed components.

T he ideal world of systems development
by simple-minded composition of ex-
isting components doesn’t exist. Appli-

cation development is still a difficult un-
dertaking. We can’t resolve the issues with
testing and ensuring correct behavior by
simply invoking the power of compo-
nents. The power of simple component
interaction contributes to the component
development process’s complexity, requir-

ing greater developer skills. However, this
same complexity and power provides in-
triguing possibilities for harnessing the
potential emergent properties of compo-
nents in the development process itself.
But that’s another story.

Rebecca Parsons is a technology principle
and senior architect at ThoughtWorks. Contact her at
rjparson@thoughtworks.com.

functional requirement: A system or software requirement
that specifies a function that a system/software system
or system/software component must be capable of
performing. These are software requirements that de-
fine system behavior—that is, the fundamental process
or transformation that the system’s software and hard-
ware components perform on inputs to produce out-
puts. Contrast with nonfunctional requirement.

performance requirement: A system or software requirement
specifying a performance characteristic that a system/soft-
ware system or system/software component must
possess—for example, speed, accuracy, and frequency.

external interface requirement: A system or software
requirement that specifies a hardware, software, or
database element with which a system/software
system or system/software component must inter-
face, or that sets forth constraints on formats, tim-
ing, or other factors caused by such an interface.

design constraint (requirements): A software requirement
that impacts or constrains the design of a software sys-
tem or software system component. Examples of de-
sign constraints are physical requirements, perfor-
mance requirements, software development standards,
and software quality assurance (SQA) standards.

quality attribute (requirement): A requirement that
specifies the degree of an attribute that affects the
quality that the system or software must possess—
for example, reliability, maintainability, or usability.
See also software quality attribute (requirement).

requirements specification: In system/software engineer-
ing, a document that states the functions that software
must perform, the required level of performance
(speed, accuracy, and so on), the nature of the re-
quired interfaces between the software product and
its environment, the type and severity of constraints
on design, and the quality of the final product.

Synonymous with external specification.
See also software requirements specification.

nonfunctional requirement: A software requirement that
describes not what the software will do but how the
software will do it—for exam-ple, software perfor-
mance requirements, software external interface re-
quirements, software design constraints, and software
quality attributes. Nonfunctional requirements are
sometimes difficult to test, so they are usually evaluated
subjectively. Contrast with functional requirement.
Sometimes referred to as design constraints.

software specification review (SSR): In software system en-
gineering, a joint acquirer–supplier review conducted
to finalize software configuration item (SCI) require-
ments so that the software developer can initiate the
next step in the software development process. The SSR
is conducted when SCI requirements have been suffi-
ciently defined to evaluate the developer’s responsive-
ness to and interpretation of the system- or segment-
level technical requirements. A successful SSR is
predicated on the developer’s determination that the
software requirements specification and interface speci-
fications form a satisfactory basis for proceeding to the
preliminary design phase. [Military Std. 1521B-1985]

software design specification: A document that specifies
the design of a system or component. Typical con-
tents include algorithms, system or component archi-
tecture, control logic, data structures, I/O formats,
and interface descriptions. Also called software de-
sign description, internal specifications. Contrast with
software requirements specification, external specifi-
cations. [ANSI/IEEE Std. 610.12-1990]

software requirements phase: The software development
lifecycle phase during which the requirements for a
software product, such as functional and performance
capabilities, are defined, documented, and reviewed.

requirements traceability: The identification and docu-
mentation of the derivation path (upward) and allo-
cation/flow-down path (downward) of require-
ments in the requirements hierarchy. See also
traceability.

G L O S S A R Y

SOFTWARE
ENGINEERING

R
ic

h
a

r
d

 H
.

T
h

a
y

e
r

 ■
C

a
li

fo
r

n
ia

 S
ta

te
 U

n
iv

e
r

s
it

y
,

S
a

c
r

a
m

e
n

to
 ■

th
a

y
e

r
@

c
s

u
s

.e
d

u

—Continued on p. 88

Requirements
engineering domain

(cont’d from inside
back cover)

