
9 6 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E

design
E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

T
he first program I wrote on a salary
was scientific calculation software in
Fortran. As I was writing, I noticed
that the code running the primitive
menu system differed in style from the
code carrying out the calculations. So

I separated the routines for these tasks,
which paid off when I was asked to create
higher-level tasks that did several of the in-

dividual menu steps. I could just
write a routine that called the
calculation routines directly
without involving the menus.

Thus, I learned for myself a de-
sign principle that’s served me
well in software development:
Keep your user interface code sep-
arate from everything else. It’s a
simple rule, embodied into more
than one application framework,
but it’s often not followed, which

causes quite a bit of trouble.

Stating the separation
Any code that does anything with a user

interface should only involve user interface
code. It can take input from the user and
display information, but it should not ma-
nipulate the information other than to for-
mat it for display. A clearly separated piece
of code—separate routines, modules, or
classes (based on your language’s organiz-
ing structure)—should do calculations, val-
idations, or communications should be
done by a clearly separated piece of code.
For the rest of the article, I’ll refer to the

user interface code as presentation code
and the other code as domain code.

When separating the presentation from
the domain, make sure that no part of the
domain code makes any reference to the
presentation code. So, if you write an ap-
plication with a WIMP (windows, icons,
mouse, and pointer) GUI, you should be
able to write a command line interface that
does everything that you can do through
the WIMP interface—without copying any
code from the WIMP into the command
line.

Why do this?
Following this principle leads to several

good results. First, this presentation code
separates the code into different areas of
complexity. Any successful presentation re-
quires a fair bit of programming, and the
complexity inherent in that presentation
differs in style from the domain with which
you work. Often it uses libraries that are
only relevant to that presentation. A clear
separation lets you concentrate on each as-
pect of the problem separately—and one
complicated thing at a time is enough. It
also lets different people work on the sepa-
rate pieces, which is useful when people
want to hone more specialized skills.

Making the domain independent of the
presentation also lets you support multiple
presentations on the same domain code, as
suggested by the WIMP versus command
line example, and also by writing a higher-
level Fortran routine. Multiple presentations

Separating User Interface
Code
Martin Fowler

M a r c h / A p r i l 2 0 0 1 I E E E S O F T W A R E 97

are the reality of software. Domain
code is usually easy to port from
platform to platform, but presenta-
tion code is more tightly coupled to
operating system or hardware. Even
without porting, it’s common to find
that demands to changes in the pre-
sentation occur with a different
rhythm than changes in the domain
functionality.

Pulling away the domain code
also makes it easier to spot—and
avoid—duplication in domain code.
Different screens often require sim-
ilar validation logic, but when it’s
hidden among all the screen han-
dling, it’s difficult to spot. I remem-
ber a case where an application
needed to change its date valida-
tion. The application had two parts
that used different languages. One
part had date validation copied
over its date widgets and required
over 100 edits. The other did its
validation in a single date class and
required just a single change. At the
time, this was hyped as part of the
massive productivity gain you could
get with object-oriented software—
but the former non-object system
could have received the same bene-
fit by having a single date valida-
tion routine. The separation yielded
the benefit.

Presentations, particularly WIMPs
and browser-based presentations, can
be very difficult to test. While tools ex-
ist that capture mouse clicks, the re-
sulting macros are very tricky to main-
tain. Driving tests through direct calls
to routines is far easier. Separating the
domain code makes it much easier to
test. Testability is often ignored as a
criteria for good design, but a hard-to-
test application becomes very difficult
to modify.

The difficulties
So why don’t programmers sepa-

rate their code? Much of the reason
lies in tools that make it hard to
maintain the separation. In addi-
tion, the examples for those tools
don’t reveal the price for ignoring
the separation.

In the last decade or so, the
biggest presentation tool has been

the family of platforms for develop-
ing WIMP interfaces: Visual Basic,
Delphi, Powerbuilder, and the like.
These tools were designed for
putting WIMP interfaces onto SQL
databases and were very successful.
The key to their success was data-
aware widgets, such as a pop-up
menu bound to a SQL query. Such
tools are very powerful, letting you
quickly build a WIMP interface that
operates on a database, but the
tools don’t provide any place to ex-
tract the domain code. If straight
updates to data and view are all you
do, then this is not a problem. Even
as a certified object-bigot, I always
recommend these kinds of tools for
these kinds of applications. How-
ever, once domain logic gets compli-
cated, it becomes hard to see how
to separate it.

This problem became particularly
obvious as the industry moved to
Web interfaces. If the domain logic is
stuck inside a WIMP interface, it’s
not possible to use it from a Web
browser.

However, the Web interfaces of-
ten encourage the same problems.
Now we have server page technolo-
gies that let you embed code into
HTML. As a way of laying out how
generated information appears on
the page, this makes plenty of sense.
The structure starts breaking down
when the code inside the server page
is more complicated. As soon as
code starts making calculations,
running queries, or doing valida-
tions, it runs into that same trap of

mixing presentation with domain
code. To avoid this, make a separate
module that contains the domain
code and only make simple calls
from the server page to that module.
For a simple set of pages, there is an
overhead (although I would call it a
small one), but as the set gets more
complicated, the value of the sepa-
ration grows.

This same principle, of course, is at
the heart of using XML. I built my
Web site, www.martinfowler.com, by
writing XML and converting it to
HTML. It lets me concentrate on the
structure of what I was writing in one
place, so I could think about its for-
matting later (not that I do any fancy
formatting.) Those who use content-
oriented styles in word processors are
doing much the same thing. I’ve
reached the point where that kind of
separation seems natural. I’ve had to
become a bit of an XSLT whiz—and
the tools for that aren’t even adoles-
cent yet.

The general principle here is that
of separating concerns, but I find
such a general principle hard to ex-
plain and follow. After all, what
concerns should you separate? Pre-
sentation and domain are two sepa-
rable concerns I’ve found straight-
forward to explain—although that
principle isn’t always easy to fol-
low. I think it’s a key principle in
well-engineered software. If we ever
see engineering codes for software,
I’d bet that separation of presenta-
tion and domain will be in there
somewhere.

Martin Fowler is the chief scientist for ThoughtWorks, an
Internet systems delivery and consulting company. For a decade,
he was an independent consultant pioneering the use of objects
in developing business information systems. He’s worked with
technologies including Smalltalk, C++, object and relational
databases, and Enterprise Java with domains including leasing,
payroll, derivatives trading, and health care. He is particularly
known for his work in patterns, UML, lightweight methodologies,
and refactoring. He has written four books: Analysis Patterns,
Refactoring, Planning Extreme Programming, and UML Distilled.
Contact him at fowler@acm.org.

DESIGN

Pulling away the
domain code also
makes it easier to

spot—and avoid—
duplication in
domain code.

